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Multidimensional Auctions of Contracts: 
An Empirical Analysis†

By Yunmi Kong, Isabelle Perrigne, and Quang Vuong*

In this paper, we conduct a structural analysis of  multi-attribute 
auctions of contracts with a general allocation rule when private 
information is multidimensional. Upon modeling bidders’ contract 
value that accounts for their endogenous ex post actions, we non-
parametrically identify bidders’ private information from their bids 
and estimate their joint distribution. Analyzing  cash-royalty auctions 
of Louisiana oil leases, we find government revenue worse and devel-
opment rates no better than in a cash auction with a fixed royalty 
in view of adverse selection and moral hazard. Our findings revise 
conventional wisdom on the optimality of  multi-attribute auctions.  
(JEL D44, D82, D86, H82, Q35)

Contracts involving an upfront payment and a sharing rule based on the agent’s 
output are commonly observed. Examples are the relationships between an author 
and a publisher, a licensee and a patent holder, a sharecropper and a landlord, a con-
tracting firm and a government agency to name a few. The magnitude of economic 
activity governed by these contracts is large.1 As a public finance issue, questions 
of how best to allocate and design these contracts are important because reduc-
ing spending and increasing revenue through better mechanisms means less distor-
tionary taxation. In particular, auctions are often the mechanism employed by the 
principal to choose among competing agents and set contract terms. A common 
feature of these auctions is that agents bid on several attributes and bidders have 
multidimensional private information. Our paper contributes to the literature by pro-
posing a structural analysis of auctions of contracts with multidimensional private 
information and a general allocation rule based on multivariate bids. Our empirical 
application studies  cash-royalty auctions of oil leases where the contract takes the 
form of a real option.

1 The federal government alone procured $586 billion worth of contracts in 2019. Among these, the Department 
of Defense awarded 18 percent of its procurement dollars to incentive contracts.
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Auctions of contracts were first studied by Laffont and Tirole (1987) and McAfee 
and McMillan (1987). This literature relies on  one-dimensional private information 
and designs a menu of upfront cash and contingent payments that are negatively 
related.2 In contrast, when private information is multidimensional, there is a pau-
city of theoretical results due to technical challenges arising from multidimensional 
screening as surveyed by Rochet and Stole (2003), who point out the “uncomfortably 
restrictive” nature of  one-dimensional types in empirical applications. Indeed, mul-
tidimensionality of bids is prevalent in practical contracting. The US Government 
Accountability Office reports that the vast majority of large procurement contracts 
is selected based on more than one attribute. For instance, in  design-build auctions 
used by departments of transportation in US states and other countries, the allo-
cation process considers design quality in addition to price. Similarly, both qual-
ity and price matter in private sector contracting and online freelancing auctions. 
Multidimensional private information provides a rich framework to account for the 
variability of observed multivariate bids.

In this paper, we propose a structural analysis of auctions of contracts with multi-
dimensional private information and a general allocation rule based on multivariate 
bids. Specifically, bidders propose both an upfront or “cash” payment and a sharing 
rule or royalty in their bids. We make minimal assumptions about the allocation rule 
and allow for  nondeterministic allocation, as may arise when no rule is announced. 
In view of the complexity of multidimensional screening in the presence of mul-
tidimensional private information, we adopt a best response approach. Our model 
allows for (i) adverse selection through the principal’s payoff which depends not 
only on the bid components but also on the bidder’s private information and (ii) 
moral hazard or incentive effects induced by the royalty paid as a share of pro-
duction revenue. In our empirical application, the value of the contract takes the 
form of a real option because the winner is not obligated to produce. We then inter-
pret the effect of revenue sharing on the agent’s incentive to exercise the option as 
moral hazard.3 We model bidders with bidimensional private information or types 
and a contract value that depends on each bidder’s private information and royalty 
bid. The first  type component represents the bidder’s productivity or expected pro-
duction volume while the second  type component represents his economic cost of 
production. 

We show that bidding a higher royalty rate is less costly for “weak” types, i.e., 
agents with low productivity and/or high cost, than for “strong” types. Intuitively, 
a given royalty percentage is less costly given lower expected production because 
royalty is a share of revenue. Also, it is less costly in expectation given a higher cost 
because a higher cost decreases the probability of production. As the principal does 
not observe bidders’ private information, agents strategically choose to submit a 
 cash-royalty bid that reduces their payments to the principal without compromising 
their winning probability. Upon characterizing the bidder’s optimal  cash-royalty bid 
as a function of his bidimensional type, we show that, under a known contract value 

2 See Hansen (1985) and DeMarzo, Kremer, and Skrzypacz (2005) who show that royalties reduce bidders’ 
information rents, Board (2007) and Cong (2020) who study optimal design when the contract takes the form of a 
real option, and Skrzypacz (2013) who surveys the literature.

3 The traditional definition of moral hazard involves an action that is unobservable to the principal. Here we use 
the term more broadly to refer to incentive effects on agents’ ex post actions.
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function, the joint distribution of types is identified from bids upon exploiting the 
bidder’s  first-order conditions. We then develop an estimation method for the joint 
distribution of bidders’ types allowing for affiliation of private information within 
and across bidders. Our methodology extends to a large class of  multi-attribute auc-
tions with multidimensional information including scoring auctions as well as other 
contract allocation procedures with general allocation rules that may be nonlinear, 
nondeterministic, and/or unannounced.

We use a novel dataset of Louisiana auctions of oil leases in which bidders bid on 
both a cash payment and a royalty rate. Institutional and empirical evidence supports 
a nondeterministic allocation rule as well as the multidimensional nature of bidders’ 
private information. As firms are not obligated to drill, we model the contract value 
as an option value, borrowing insights from the option pricing literature. The option 
value takes into account that the winning bidder might not exercise his option, i.e., 
develop the tract. Our estimates of bidders’ private information indicate correlations 
within and between bidders. We also find that for a large fraction of bidders, the 
cost of production is higher than expected revenue, explaining the low development 
rate observed on US onshore tracts. Our estimated results on the predicted rate of 
development and expected production volumes are close to those observed in reality 
though we do not use any  post-auction observations in estimation.

Given the limited theoretical guidance on how multiple versus single attribute 
bidding compare under multidimensional private information, our paper provides 
empirical responses to several questions through a rich set of counterfactuals. First, 
we compare  cash-royalty auctions with  fixed-royalty auctions, in which the principal 
fixes the royalty rate so that bidders bid on the cash component only.  Cash-royalty 
auctions allow royalty flexibility by letting competitive forces determine the royalty. 
However, they are more susceptible to adverse selection because they give agents 
the freedom to select favorable contract terms that reduce their payments. Our 
empirical results show that  cash-royalty auctions yield lower government revenue 
than  fixed-royalty auctions while failing to improve the development probability 
or social surplus. Indeed, the potential benefits of royalty flexibility fail to domi-
nate the adverse selection effects of  cash-royalty bidding.4 Second, in light of Che 
(1993) and Asker and Cantillon (2008), we simulate  quasi-linear scoring auctions. 
Here again, reducing  bidder-driven royalty variance through the score’s curvature 
improves government revenue, and  fixed-royalty auctions perform better than the 
scoring auctions, in contrast to existing results from the scoring auction literature. 
This is so because (i) the bidder’s incentives to develop the lease are affected by 
his royalty bid, and (ii) the principal’s payoff depends not only on the winner’s bid 
but also on his private information. Beyond auction design, we also assess policy 
instruments such as increasing the lease duration and exploiting fluctuations of oil 
prices. Both have a positive impact on government revenue, though increasing the 
lease duration decreases the development probability.

4 As a concrete example, consider a bidder who bids a 25 percent royalty and $820 of cash per acre in the 
Louisiana auction. From our counterfactual, this bidder would bid $940 per acre in a  fixed-royalty auction with 23 
percent fixed royalty, which is the empirical average royalty. Endogenizing the development probability, the gov-
ernment’s ex ante expected royalty receipts are only $60 per acre higher in the  cash-royalty auction while the cash 
bid is $120 less per acre, resulting in a net loss for the government.
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Related Literature.—Theoretical guidance on auctions with multidimensional 
private information is sparse; important exceptions are Asker and Cantillon (2008, 
2010) who study procurements where the principal’s payoff is determined by the 
price and quality of a product. They show that  quasi-linear scoring auctions strictly 
dominate  price-only auctions with fixed quality standards. By characterizing an 
optimal mechanism in the  two-by-two discrete type space, they also illustrate the 
difficulty of deriving optimal auctions given multidimensional types, finding that the 
optimal mechanism cannot be implemented by a simple auction format and differs 
significantly from its  one-dimensional counterpart. This difficulty is linked to the 
challenges of multidimensional screening as surveyed by Rochet and Stole (2003), 
in which there is no longer an exogenous ordering of the type space and no a priori 
knowledge of which incentive compatibility constraints will be binding.

 Multi-attribute auctions, in which the winner is chosen based on more than one 
attribute, encompass a large set of auction mechanisms including the scoring auc-
tions well known in the empirical literature. In the case of  price-quality scoring 
auctions, a first set of studies takes the project quality as exogenous. Examples 
include Nakabayashi (2013); Yoganarasimhan (2016); Andreyanov (2018); 
Krasnokutskaya, Song, and Tang (2020); and Laffont et al. (2020). A second set of 
studies endogenizes the submitted qualities.  Quasi-linear scoring rules are the most 
frequently studied there due to convenient theoretical properties. Examples include 
Lewis and Bajari (2011) where quality is replaced by project completion time, and 
Allen et al. (2019) on auctions of insolvent banks, where the weights in the scoring 
rule are unknown by bidders. See also Takahashi (2018) on  price-per-quality pro-
curement auctions of road construction projects, Sant’Anna (2018) on Brazilian oil 
leases, and Hanazono et al. (2016) for an econometric method. We contribute to the 
 multi-attribute auction literature by allowing for agents’ endogenous ex post actions 
and the adverse selection and moral hazard that result, in contrast to work that treats 
ex post actions as fixed or exogenous. In addition, we provide a general methodol-
ogy that extends to a broad set of allocation rules.

In using real options to study oil leases, our paper relates to Bhattacharya, Ordin, 
and Roberts (2022) and Herrnstadt, Kellogg, and Lewis (2020). The former paper 
investigates  single-attribute auctions such as bidding on cash or royalty only under 
 one-dimensional private information. Using New Mexico  fixed-royalty auctions, the 
authors exploit lease development timing to estimate drilling costs. The latter paper 
abstracts from bidding and calibrates a model of firms to study the impact of royalty 
rates and lease duration on their drilling and production. More broadly, our paper 
relates to empirical studies of real options that are widely used to model decisions 
under uncertainty in various fields such as management, research and development, 
and resource economics. See, e.g., Pakes (1986) on the analysis of patents.

Our paper contributes to the study of contract allocation policy by providing an 
empirical response on how to allocate contracts given multidimensional private 
information. We find that simpler can be better;  single-attribute bidding can perform 
better than  multi-attribute bidding in the presence of adverse selection. This con-
trasts with conventional wisdom from  price-quality auctions, providing new insights 
on incentive contracts and the merits of  multi-attribute auctions. Methodologically, 
our paper develops a flexible method to analyze endogenous, multivariate bids 
under multidimensional private information and a general allocation rule. We model 
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contract values that allow for agents’ endogenous ex post actions and account for the 
moral hazard and adverse selection that result.

The paper is organized as follows. Section I introduces the  cash-royalty auctions 
of Louisiana oil leases and models the lease contract as a real option. Section  II 
presents the auction model, establishes identification of the primitives and devel-
ops a semiparametric estimation method. Section  III discusses empirical results, 
whereas Section IV assesses the gain/loss of the Louisiana  cash-royalty auctions 
relative to  fixed-royalty auctions and scoring auctions as well as the efficacy of 
some policy instruments in counterfactual studies. Section V discusses robustness 
and an extension of our methodology to a general  multi-attribute auction setting. 
Section VI concludes.

I. Oil Lease Auctions and Option Value

This section introduces our empirical context: auctions of contracts by the State 
of Louisiana for the allocation of oil leases. We present the data and some empirical 
evidence on the state’s allocation rule. Given that the contract is an option to develop 
the leased tract for oil production, we model its value as an option value.

A. Institutional Background and Empirical Evidence

Auction Data.—The Louisiana Department of Natural Resources (1974–2003b) 
sells oil leases on lands owned by the State of Louisiana and its agencies. As is 
common in the United States, a lease grants the lessee the right, but not the obliga-
tion, to develop the tract for oil production. The lessee has a period of three years to 
develop the tract. If no development is performed, the lessee loses the lease. A sig-
nificant proportion of leased tracts are not drilled. This is also the case in Hendricks 
and  Porter (1988); Hendricks and Porter (1996); Haile, Hendricks, and  Porter 
(2010);  Aradillas-Lopez et al. (2018); and Bhattacharya, Ordin, and Roberts (2022). 
We consider auctions of onshore leases between 1974 and 2003 that have at least 
forty acres and two or more bidders.5 In their bid, bidders must specify both a posi-
tive cash payment and a royalty rate. We compute the cash component as the imme-
diate payment plus the discounted present value of annual rental fees. Meanwhile, 
the royalty bid is a percentage. Contingent on oil production, the firm must pay this 
percentage of production volume times the price of oil. The State levies the royalty 
on revenue and not on profit as the latter would require a close monitoring of costs. 
This  multi-attribute auction format differs from the standard one used in oil lease 
auctions studied by Hendricks and Porter (1988) and more recently by Kong (2020, 
2021) and Bhattacharya, Ordin, and Roberts (2022) in which the government fixes 
a common royalty rate and firms bid on the cash amount only. We refer to this latter 
format as a  fixed-royalty auction.

The dataset contains 568 auctions. Figure 1 displays a scatterplot of the observed 
 cash-royalty bids, while Table 1 provides summary statistics on the cash payment 
per acre, the royalty rate, number of bidders and acreage. All dollar amounts are 

5 We do not include data after 2003 because the boom in hydraulic fracturing caused a fundamental shift in the 
US oil industry. We also exclude auctions in which any bidder bid on only a portion of the tract offered for auction. 
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expressed in 2009 dollars. The level of competition is low with two bidders in 80 
percent of the sample. The median and mean cash payment are $712 and $1,015 
per acre, respectively, suggesting skewness. The median and mean royalty are both 
around 23 percent. As a comparison, the Federal Bureau of Land Management uses 
a royalty rate of 12.5 percent, and Hendricks, Porter, and Boudreau (1987) report a 
royalty of 16.67 percent for outer continental shelf leases during  1954–1969 which 
was subsequently raised to 18.75 percent during  2008–2017, while the prevailing 
rate on private land is 25 percent.6 Royalty rates display variability and are concen-
trated between 15 percent and 35 percent. Figure 1 suggests a positive association 

6 www.americanprogress.org/issues/green/reports/2015/06/19/115580/federal-oil-and-gas-royalty-and- 
revenue-reform/.

Figure 1. Scatterplot of Bids

Note: Figure displays a scatterplot of the  cash-royalty bids observed in the data sample, of which the related statis-
tics are provided in Table 1.
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Table 1—Bid Statistics

mean p10 p25 p50 p75 p90

Cash per acre ($) 1,015 224 385 712 1,154 1,903
Royalty 0.23 0.18 0.20 0.23 0.25 0.27
Number of bids 2.3 2 2 2 2 3
Acreage 327 44 72 157 400 750

Notes: Table shows summary statistics of bids in the estimation sample. Dollar amounts are 
expressed in 2009 dollars and a royalty rate of 0.23 corresponds to 23 percent. Observations are 
at the bid level in the upper two rows and auction level in the lower two rows.

http://www.americanprogress.org/issues/green/reports/2015/06/19/115580/federal-oil-and-gas-royalty-and-revenue-reform/
http://www.americanprogress.org/issues/green/reports/2015/06/19/115580/federal-oil-and-gas-royalty-and-revenue-reform/
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between the logarithm of the cash payment per acre and the royalty rate with a cor-
relation coefficient equal to 0.38.

State’s Choice of Winner.—In the absence of an announced allocation rule, we 
explore the data for patterns in the state’s choice of winner among submitted bids.7 
Considering  two-bidder auctions, we define a dominant bid as one that has both 
higher cash payment and royalty than its competing bid. We find that there is a 
dominant bid 64 percent of the time and that the state selects this bid as the winner 
99 percent of the time. This is a consistent pattern that bidders can infer. When there 
is no dominant bid, the state selects the bid with higher cash payment 68 percent of 
the time and the bid with higher royalty 32 percent of the time. This suggests that 
the state’s choice is not lexicographic. Figure 2 visualizes all the pairwise choices 
implied by the data. For instance, if bid A is chosen over bids B and C, we learn 
information about two pairwise choices: A over B and A over C. Figure 2 plots all 
the pairwise choices with a circle for the winner and a triangle for the loser. The  x  
and  y  coordinates represent the royalty and cash components of the bid in relation to 
the competing bid in the pair. Points in the right (respectively upper) quadrants have 
higher royalty (respectively cash amounts) than the competing bid. Thus, points in 
the  upper-right quadrant have both higher royalty and cash payment. The transition 
from triangles in the  lower-left quadrant to circles in the  upper-right quadrant visu-
alizes the increased probability of winning as the bid moves in that direction. This 
figure indicates that the probability of winning is increasing in both cash and royalty. 
It also exhibits positive correlation between cash and royalty within auctions.8

This positive correlation contrasts with the main prediction in Laffont and Tirole 
(1987) and McAfee and McMillan (1987) who study optimal auctions of contracts. 
Their models lead to a decreasing mapping between cash payment and royalty. 
Intuitively, the principal selects the bidder with the lowest royalty and highest cash 
payment because the “good” firm with high productivity or cost efficiency should 
be the residual claimant and benefit from informational rent. In contrast, a “bad” 
firm should see its rent reduced to the minimum. This firm bids a low upfront pay-
ment and a large royalty. These models are based on a single dimension of private 
information. More generally,  one-dimensional private information would result in 
bid pairs that approximate a curve in  cash-royalty space. In our data, however, the 
 within-auction bid distribution is widely scattered across two dimensions rather than 
exhibiting a curve, suggesting  multidimensional rather than  one-dimensional bid-
ders’ types.

B. Contract as an Option Value

Since the lessee has no obligation to develop the tract, we model the oil lease as 
an option value. Let  a ∈  [0, 1)   be the royalty component of the bid,   θ 1    the firm’s 
expected production volume, and   θ 2    the firm’s economic cost of production. From a 
bidder’s perspective, the contract is an option to obtain   (1 − a)   θ 1    expected units at 

7 Our inquiry to the Louisiana DNR did not yield more details on the allocation procedure beyond a response 
that the “geological and engineering staff looks at each bid and make the determination.”

8 In the online Appendix, we also check for bidders’ asymmetry and stability of the allocation patterns.
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a cost of   θ 2   , where  1 − a  is the portion kept by the firm. The bidder’s contract value 
internalizes the fact that the probability of exercise is less than one and depends 
on the future price of oil which is uncertain at the time of bidding. Letting  p  be 
the oil price, the firm exercises the option when   (1 − a) p  θ 1   >  θ 2   ; i.e., the profit 
is positive. In the option literature, one says that a stock option is exercised only if 
the stock price exceeds the strike price, which is the role played by   θ 2   . Modeling 
the bidder’s value as an option is not new in the empirical literature on oil lease 
auctions. Bhattacharya, Ordin, and  Roberts (2022) and Herrnstadt, Kellogg, and 
Lewis (2020) adopt option values in their analysis of  fixed-royalty auctions and 
 nonauctioned leases, respectively.

Borrowing insights from the option pricing literature, we model oil prices as fol-
lowing a geometric Brownian motion with known volatility that is constant for the 
duration of the option. As in Black and Scholes (1973); Merton (1973); and Black 
(1976), the geometric Brownian motion yields a  closed-form expression of value for 
European options, which are exercised only at expiration. American options, which 
can be exercised at any time until expiration, do not have a closed form solution. 
We adopt European options for the following reasons. First, Hull (2017) explains 
that some properties of an American option are frequently deduced from those of 
its European counterpart. Second, we conduct a robustness analysis with American 
options and find that the difference in empirical results is small. See Section VA. 
Third, Bhattacharya, Ordin, and Roberts (2022) and Herrnstadt, Kellogg, and Lewis 

Figure 2. State’s Choice Patterns

Notes: Figure visualizes the state’s choice patterns. When a bid is chosen over the  n − 1  other bids in the auction, 
this corresponds to  n − 1  observed pairwise choices. The winning and losing bids in each pairwise choice are plot-
ted with a circle and a triangle, respectively. The  x  and  y  coordinates represent the royalty and cash components of 
each bid in relation to the competing bid in the pair.
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(2020) document substantial bunching of drilling times in the final months before 
lease expiration.

Let  t  be the duration in years until the lease expires,  p  the price of oil at the time 
of the auction,  σ  the price volatility,  r  the  one-year interest rate, and  Φ ( · )   the stan-
dard normal distribution. The oil price  p  follows a geometric Brownian motion with 
volatility  σ  and zero drift after adjusting for inflation. The variables  t, p, σ , and  r  are 
exogenous. Upon production, the firm receives the price at the time of production. A 
bidder’s value for the lease at the time of auction is

(1)  V (a;  θ 1  ,  θ 2  )  =  e   −rt  
[
   (1 − a) p  θ 1   

   
 firm ′  s share

    Φ (x)  −  θ 2     Φ (x − σ  √ 
_
 t  )   


   

Pr (exercise) 

   
]
 , 

where

(2)  x ≡   
log ( (1 − a) p  θ 1   /  θ 2  )  +  σ   2  t/2

   ____________________  σ  √ 
_
 t    . 

The derivation of (1)–(2) is as follows. The firm exercises the option if  
  (1 − a)   p t    θ 1   −  θ 2   > 0  where   p t    is the price at the time  t  of expiration. Thus, the 
present value of the option is   e   −rt  E [max { (1 − a)   p t    θ 1   −  θ 2  , 0} ]  . The geometric 
Brownian motion implies that   p t    is log normally distributed with  E ( p t  )  = p  and the 
standard deviation of  log  p t    is  σ  √ 

_
 t   . From Hull (2017),  E [max { (1 − a)   p t    θ 1   −  θ 2  , 0} ]   

= E [ (1 − a)   p t    θ 1  ] Φ (x)  −  θ 2   Φ (x − σ  √ 
_
 t  )  , where  x =  [log [E ( (1 − a)   p t    θ 1  )  /  θ 2  ]  +  

σ   2  t / 2]  /  (σ  √ 
_
 t  )  .9

Intuitively,  Φ (x − σ  √ 
_
 t  )   represents the ex ante probability of option exercise, 

i.e., the probability that the oil price will be high enough to make the firm’s profit 
positive. If option exercise occurs exogenously with probability  Φ (x − σ  √ 

_
 t  )  , the 

value of the option would be instead   e   −rt  [ (1 − a) p  θ 1   −  θ 2  ] Φ (x − σ  √ 
_
 t  )  , i.e., the 

discounted expected profit from exercise times the exercise probability. However, 
option exercise is in fact endogenous and occurs when the oil price is higher than 
some threshold. Thus, the expected price conditional on exercise is actually higher 
than the unconditional price. Therefore,   (1 − a) p  θ 1    is multiplied by  Φ (x)   to account 
for this.

In view of our empirical analysis, it is useful to state how the exogenous variables, 
the firm’s types, and the bidder’s royalty bid affect the option value and the exercise 
probability. Table 2 summarizes these effects. See also Hull (2017). Everything else 
constant, a higher productivity   θ 1    has a positive effect on both the contract value and 
the exercise probability, while a higher cost   θ 2    has a negative effect on both, in line 
with intuition. Also as expected, a higher royalty rate  a  has a negative effect on both 
option value and exercise probability while a higher price  p  has a positive effect on 
both. Meanwhile, the price volatility  σ  and the duration  t  have ambiguous effects on 

9 As explained above, the explicit expression of the option value in (1)–(2) depends on the log normality implied 

by geometric Brownian motion. Noting that  E [max { (1 − a)   p t    θ 1   −  θ 2  , 0} ]  = −  θ 2   +  (1 − a)   θ 1   E [max { p t  ,  θ 2   / 
  [ (1 − a)   θ 1  ] } ]  , the latter expectation is  ∫ max { p t  ,  θ 2   /  [ (1 − a)   θ 1  ] }  d H t   ( p t  )  , where   H t   ( · )   is the distribution of   p t   . 
This distribution could be estimated using oil price data thereby providing more flexibility to the option value at the 
cost of not having a closed form expression.
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the exercise probability. We assess the effect of lease duration in a counterfactual 
study in Section IVC. The negative effect of the royalty on the probability of option 
exercise highlights moral hazard, which we define as the effect of revenue sharing 
on the agent’s incentive to exercise the option. The lack of obligation to develop the 
lease opens up the possibility of this type of moral hazard.10 This reduced proba-
bility of option exercise is partially responsible for the negative effect the royalty 
rate has on contract value. Since royalty rates are determined endogenously through 
the allocation mechanism, moral hazard emphasizes that the allocation mechanism 
has consequences for agents’ ex post incentives. Agents in turn take these effects on 
incentives and contract value into account as they choose their  cash-royalty bids, as 
we discuss in Section II.

II. Model, Identification, and Estimation

We develop a model of auctions of contracts in which bidders bid an upfront 
payment and a royalty rate on future revenue. For general applicability, we con-
sider a generic contract value  V ( ·; ·, · )  , the contract value in (1) being an applica-
tion. We then establish identification of the model and develop a flexible estimation 
procedure.

A. A Model of Auctions of Contracts

Notations and Assumptions.—A principal, who can be a buyer or a seller, orga-
nizes a  sealed-bid auction or procurement auction in which each bidder submits a 
pair   ( a i  ,  b i  )  , where   a i   ∈  [0, 1)   is a share or royalty rate on future expected revenue 
and   b i    is a cash payment. There are  n  bidders participating in the auction. The agents 
or bidders have bidimensional private information   ( θ 1  ,  θ 2  )  ∈  Θ 1   ×  Θ 2   ≡  [  θ ¯   1  ,   

_
 θ   1  ]   

×  [  θ ¯   2  ,   
_
 θ   2  ]  . The term   θ 1    represents expected production which incorporates produc-

tivity/efficiency as well as some degree of uncertainty. The term   θ 2    represents the 
economic cost of production including opportunity costs. Upon winning the contract, 
the agent expects to produce   θ 1    at a cost of   θ 2   . We allow   θ 1    and   θ 2    to be dependent as 
a higher production volume may entail a higher cost. Moreover, private information 
is affiliated among the  n  bidders as bidder  i ’s production and cost may be large when 

10 Incentive effects on drilling activity are referred to as moral hazard by e.g., Bhattacharya, Ordin, and Roberts 
(2022). See Lewis and Bajari (2014) for moral hazard in procurement auctions.

Table 2—Effects on Option Value and Probability of Exercise

 V (a;  θ 1  ,  θ 2  )  Pr(exercise)

  θ 1   + +
  θ 2    −  − 
 a  −  − 
 p + +
 σ + Ambiguous
 t + Ambiguous

Note: Table shows the sign of the partial derivative of option value  V (a;  θ 1  ,  θ 2  )   and the proba-
bility of option exercise with respect to each variable listed.
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other bidders have large production and cost values. Thus, the vector   ( θ 11  ,  θ 21  ,  …,  
θ 1n  ,  θ 2n  )   is distributed as  F (·,  …, · | n)   on    ( Θ 1   ×  Θ 2  )    n  , which is exchangeable across 
bidders. Though the type distribution depends on  n  automatically through its dimen-
sion, the conditioning on  n  also allows for endogeneity of the number of bidders, 
which captures unobserved heterogeneity as in Campo, Perrigne, and Vuong (2003). 
Bidders do not observe other bidders’ private information, but they know the joint 
distribution  F (·,  …, · | n)   and that other bidders’ private information is affiliated 
with their own. Independence of types among the  n  bidders and among the two type 
components for each bidder is a special case. Our model is in the spirit of a private 
value paradigm where bidders know their expected production and cost.11

Bidder  i ’s contract value is captured by the function  V (a;  θ 1  ,  θ 2  )  ≥ 0 . We make 
the following natural assumptions on  V ( ·; ·, ·)  : (i) a larger royalty reduces the bid-
der’s contract value, (ii) larger expected production increases the contract value, and 
(iii) a larger cost decreases the contract value. Assumption 1(i) summarizes these 
assumptions using a subscript to denote partial differentiation.

ASSUMPTION 1: The contract value  V ( ·; ·, ·)   satisfies

 (i)    V a   (a;  θ 1  ,  θ 2  )  < 0,  V  θ 1     (a;  θ 1  ,  θ 2  )  > 0,  V  θ 2     (a;  θ 1  ,  θ 2  )  < 0, 

 (ii)   V a θ 1     (a;  θ 1  ,  θ 2  )  ≤ 0,  V a θ 2     (a;  θ 1  ,  θ 2  )  ≥ 0 .

Assumption 1(ii) on the  cross-derivatives is intuitive. Since royalty is a share of 
revenue, paying a given royalty is costlier given larger expected production. Also, a 
larger cost decreases the probability of production, making a given royalty rate less 
costly in expectation for the bidder. A simple example of contract value is  V (a;  θ 1  ,  θ 2  )   
=  (1 − a) p  θ 1   −  θ 2   , where  p  is the price of the product. The bidder keeps   (1 − a)   of 
revenue  p  θ 1    from which he deducts cost   θ 2   . The context of the empirical application 
dictates the choice of the contract value function. In the online Appendix, we prove 
that the specification of contract value in (1) satisfies Assumption 1.

The principal is characterized by an allocation rule which can be deterministic 
or probabilistic. This rule incorporates various objectives, need not be announced, 
and can be interdependent. We only require that the principal favors bidders submit-
ting larger royalties and cash payments.12 Bidders infer their winning probability 
given their bid from the history of past auctions. Because of affiliation, this proba-
bility is conditional on the bidder’s own private information   ( θ 1  ,  θ 2  )   as in the case of 
affiliated private values or more generally interdependent values. See Milgrom and 
Weber (1982) and Krishna (2010). Indeed, with affiliation, the bid distribution the 
bidder expects to compete against is conditional on his own type/value. This condi-
tioning disappears if the types are independent. We denote the winning probability 
when submitting the pair   (a, b)   as  P (a, b |  θ 1  ,  θ 2  , n)  . We make the following assump-
tion on the winning probability.

11 We discuss the common value paradigm in the online Appendix.
12 The purpose of our model is not to derive the optimal allocation rule which would imply defining a surplus 

function for the principal and his optimal behavior.
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ASSUMPTION 2: At given  n , the probability  P (a, b |  θ 1  ,  θ 2  , n)   satisfies  
  P a   (a, b |  θ 1  ,  θ 2  , n)  > 0  and   P b   (a, b |  θ 1  ,  θ 2  , n)  > 0. 

Assumption 2 reflects the principal’s preference for larger cash and royalty pay-
ments. It assumes symmetric bidders as the winning probability does not depend on 
the bidder’s identity. Bidders are symmetric when  F (·,  …, · | n)   is exchangeable 
across bidders.

 Cash-Royalty Bidding.—We adopt a best response approach in the spirit of 
Guerre, Perrigne, and Vuong (2000). Given his type   ( θ 1i  ,  θ 2i  )  , bidder  i  chooses his 
bid   ( a i  ,  b i  )   to maximize his expected utility from the auction given his winning 
probability  P ( ·, · |  θ 1i  ,  θ 2i  , n)  . His maximization problem is   max a,b   [V (a;  θ 1i  ,  θ 2i  )   
− b] P (a, b |  θ 1i  ,  θ 2i  , n)  . We now omit the index  i  for sake of simplicity. Differentiating 
with respect to  a  and  b , the  first-order conditions give

(3)   V a   (a;  θ 1  ,  θ 2  )  = −   
 P a   (a, b |  θ 1  ,  θ 2  , n) 

  ____________  
 P b   (a, b |  θ 1  ,  θ 2  , n)    ,

(4)  V (a;  θ 1  ,  θ 2  )  = b +   
P (a, b |  θ 1  ,  θ 2  , n) 

  ____________  
 P b   (a, b |  θ 1  ,  θ 2  , n)   . 

Equation (4) resembles the  first-order condition for  first-price auctions in Guerre, 
Perrigne, and Vuong (2000) for independent private values.13

To gain intuition on the bidder’s  trade-off between cash payment and royalty, 
we decompose his optimization problem as follows. For any given winning proba-
bility  P , a choice of  a  automatically determines the  b  that satisfies  P (a, b |  θ 1  ,  θ 2  , n)   
= P  because  P (a, b |  θ 1  ,  θ 2  , n)   is increasing in both   (a, b)   by Assumption 2. This 
defines a function  b (a, P |  θ 1  ,  θ 2  , n)   giving the  iso-probability curve of  cash-royalty 
combinations that achieve the winning probability  P . Then the bidder’s maximiza-
tion problem is equivalent to   max a,P   [V (a;  θ 1  ,  θ 2  )  − b (a, P |  θ 1  ,  θ 2  , n) ] P . We break this 
problem into two steps. In the first step, we consider the choice of  a  given  P , denoted  
 a (P;  θ 1  ,  θ 2  , n)  . This step allows us to see how a   ( θ 1  ,  θ 2  )  -bidder makes the  trade-off 
between royalty and cash, holding fixed his winning probability. In the second step, 
we consider the bidder’s optimal choice of  P  in light of  a (P;  θ 1  ,  θ 2  , n)   from the first 
step.

In the first step, the bidder’s choice of  a  given  P  solves  a (P;  θ 1  ,  θ 2  , n)   
≡  max a   V(a;  θ 1  ,   θ 2   ) − b(a, P |  θ 1  ,  θ 2  , n) , where the maximand is the payoff conditional 
on winning. The bidder chooses royalty  a  to maximize this payoff, accounting for 
its effect on the contract value and cash payment required to achieve  P . This leads 
to the  first-order condition

(5)   V a   (a;  θ 1  ,  θ 2  )  =  b a   (a, P |  θ 1  ,  θ 2  , n) , 

13 See Li, Perrigne, and Vuong (2002); Athey and Haile (2007); and Somaini (2020) for similar expressions for 
affiliated private and interdependent values.
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where  a = a (P;  θ 1  ,  θ 2  , n)  . This choice of  a  implies  b = b [a (P;  θ 1  ,  θ 2  , n) , P |  θ 1  ,  θ 2  , n]  .  
Equation (5) expresses the  trade-off of the marginal cost of a higher royalty against 
its marginal benefit. Bidding a higher royalty reduces the contract value but allows 
a bidder to bid less cash by Assumptions 1 and 2. This step has implications for 
adverse selection. Bidding a higher royalty rate is less costly for the undesirable 
“weak” types (with low productivity   θ 1    and/or high cost   θ 2   ) than for the desirable 
“strong” types (with high   θ 1    and/or low   θ 2   ). Given  a , a strong type pays more in roy-
alties than a weak type, making the cash component relatively more (less) attractive 
to the strong (weak) type. Because the principal does not observe   ( θ 1  ,  θ 2  )  , bidders 
exploit their private information to choose a favorable combination from the set  
  { (a, b) ; P (a, b |  θ 1  ,  θ 2  , n)  = P}  , resulting in adverse selection. In other words, bid-
ders strategically choose a  cash-royalty combination that reduces their total pay-
ment without compromising their winning probability. Since the royalty provides 
weak types a cheaper currency with which to bid, they win more often than they 
would in the absence of royalty bidding. This insight is similar in spirit to Che and 
Kim (2010) and Skrzypacz (2013).

In the second step, the bidder chooses the winning probability  P . Plugging in 
the royalty  a (P;  θ 1  ,  θ 2  , n)   and cash amount  b [a (P;  θ 1  ,  θ 2  , n) , P |  θ 1  ,  θ 2  , n]   from the first 
step, the maximization problem reduces to   max P   π (P;  θ 1  ,  θ 2  , n) P , where  π (P;  θ 1  ,  
θ 2  , n)  ≡ V [a (P;  θ 1  ,  θ 2  , n) ;  θ 1  ,  θ 2  ]  − b [a (P;  θ 1  ,  θ 2  , n) , P |  θ 1  ,  θ 2  , n]   is the payoff condi-
tional on winning. This leads to the  first-order condition

(6)    1 _ P   = −   
 π P   (P;  θ 1  ,  θ 2  , n) 

  _  
π (P;  θ 1  ,  θ 2  , n)   , 

giving the solution  P = P ( θ 1  ,  θ 2  , n)  . Equation (6) expresses the  trade-off between 
the bidder’s desire to increase his winning probability through a more competitive 
bid and his payoff conditional on winning. This step implies that a strong bidder 
tends to bid a higher cash payment and/or royalty to increase his winning probabil-
ity because his contract value is larger. Depending on the allocation rule, this can 
lead to the prevalence of dominant bids as documented in Section IA. The auction 
also induces moral hazard since higher royalty rates provide poor incentives for the 
winner to execute the contract.

Differentiating  P [a, b (a, P |  θ 1  ,  θ 2  , n)  |  θ 1  ,  θ 2  , n]  = P  with respect to  a  and  P  gives   
b a   (a, P  |   θ 1  ,  θ 2  , n)  = −  P a   (a, b |  θ 1  ,  θ 2  , n)   / P b   (a, b |  θ 1  ,  θ 2  , n)   and   b P   (a, P |  θ 1  ,  θ 2  , n)   
= 1 /  P b   (a, b |    θ 1  ,  θ 2  , n) . Thus, using the definition of  π ( ·; ·, ·, n)   and   π P   (P;  θ 1  ,  θ 2  , n)   
= −  b P   [a(P;  θ 1  ,  θ 2  ,   n), P |  θ 1  ,  θ 2  , n]  by the envelope theorem, the  first-order condi-
tions (5)–(6) give (3)–(4). As in the previous literature on the structural analysis 
of auction data, (3) and (4) constitute the basis for identification and estimation as 
discussed next.

B. Identification of Model Primitives

Observables and Primitives.—We consider  L  independent auctions. In each auc-
tion  ℓ , we observe the bid vector   ( a 1ℓ  ,  b 1ℓ  ,  …,  a  n ℓ  ℓ  ,  b  n ℓ  ℓ  )   of the   n ℓ    bidders, which is 
distributed as  G ( ·,  …, · |  n ℓ  )  . For now, we omit exogenous variables characteriz-
ing the auctioned contracts. In each auction, we also observe the winning dummy   
W iℓ    indicating that bidder  i  is selected by the principal. Because types are  affiliated 
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across bidders, the bid components are also affiliated across the   n ℓ    bidders. Moreover, 
the bid components   ( a i  ,  b i  )   for each bidder  i  are dependent within bidder. The joint 
bid distribution  G ( ·,  …, · | n)   of   ( a 1  ,  b 1  ,  …,  a n  ,  b n  )   is exchangeable in the bidders’ 
identities since they are symmetric. The model primitives are the contract value  
 V ( ·; ·, ·)  , the joint distribution of types  F ( ·,  …, · | n)   and the probability of win-
ning  P ( ·, · | ·, ·, n)  .

About the Contract Value.—We first discuss the identification of the value func-
tion  V (a;  θ 1  ,  θ 2  )  . Suppose that the winning probability and its derivatives are known 
so that the  right-hand sides in (3) and (4) denoted (say)   Y 1    and   Y 2   , respectively, are 
observed. This gives a system of equations   V a   (a;  θ 1  ,  θ 2  )  =  Y 1    and  V (a;  θ 1  ,  θ 2  )  =  
 Y 2   , where   ( θ 1  ,  θ 2  )   are unobserved random terms. These resemble nonseparable mod-
els with multiple error terms. Matzkin (2003, Appendix A) addresses their identi-
fication under (i) monotonicity in   ( θ 1  ,  θ 2  )  , (ii) independence of   ( θ 1  ,  θ 2  )   from  a , and 
(iii) some normalizations. While (i) is satisfied by Assumption 1 and (iii) can be 
imposed, (ii) does not hold since  a = a ( θ 1  ,  θ 2  ; n)   through bidders’ best response.14

The value function  V ( ·; ·, ·)   is not identified without additional information  
and/or restrictions. Consider the following separable specification  V (a;  θ 1  ,  θ 2  )  =  
θ 1    V 0   (a)  −  θ 2   , where   V 0   ( · )   is a positive decreasing function. The system (3)–(4) 
becomes   θ 1    V 0a   (a)  =  Y 1    and   θ 1    V 0   (a)  −  θ 2   =  Y 2   . Any choice of   V 0   ( · )   identifies   
θ 1   =  θ 1   (a, b, n)   and   θ 2   =  θ 2   (a, b, n)   given   ( Y 1  ,  Y 2  )  . In other words, different spec-
ifications of   V 0   ( · )   lead to the same observables   ( Y 1  ,  Y 2  )  . Intuitively, any choice of  
  V 0   ( · )   is “compensated” by the inverse best responses   θ 1   ( ·, ·, n)   and   θ 2   ( ·, ·, n)  . 
This leads to the next assumption.

ASSUMPTION 3: The contract value  V (a;  θ 1  ,  θ 2  )   is a known function.

For instance, the agent’s contract value could be   (1 − a) p  θ 1   −  θ 2   . Our empirical 
application takes  V (a;  θ 1  ,  θ 2  )   as an option value given by (1).

Identification of  P ( ·, · | ·, ·, n)   and  F ( ·,  …, · | n)  .—We now turn to the identifi-
cation of the winning probability  P ( ·, · | ⋅, ·, n)   and its derivatives. If private infor-
mation were independent across bidders, this probability would reduce to  P (a, b | n)   
which is identified as the conditional expectation of winning,  E [W | a, b, n]  , where  
W  is observed. With affiliated private information, we note that bidder  i ’s winning 
probability with a bid pair   (a, b)   is a composite of two objects: the conditional dis-
tribution   G  a −  , b −  | θ 1  , θ 2     ( a −i  ,  b −i   |  θ 1i  ,  θ 2i  , n)  , which assesses the competition given bidder  
 i ’s type   ( θ 1i  ,  θ 2i  )  , and the choice probability  C [a, b,  a −i  ,  b −i   | n]   that bidder  i  wins with   
(a, b)   when his opponents submit the vector   ( a −i  ,  b −i  )  . Specifically,

(7)  P (a, b |  θ 1i  ,  θ 2i  , n)  =  ∫ 
 
  
 
  C [a, b,  a −i  ,  b −i   | n]  d G  a −  , b −  | θ 1  , θ 2     ( a −i  ,  b −i   |  θ 1i  ,  θ 2i  , n) . 

14 This difficulty also arises in Luo, Perrigne, and Vuong (2018) in nonlinear pricing with a  one-dimensional 
type. Identification is achieved by exploiting multiplicative separability of the consumer’s utility and optimality of 
the observed nonlinear pricing. Here, the optimal mechanism remains an unresolved issue because of multidimen-
sional screening. See Rochet and Stole (2003) for a survey, Asker and Cantillon (2010) and Carroll (2017). For this 
reason, we adopt a best response approach.
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The choice probability  C [ ·,  …, · | n]   is identified from observed bids and the win-
ner’s identities as the conditional expectation  E [ W i   | a, b,  a −i  ,  b −i  , n]  . Our approach 
concerning  C [ ·,  …, · | n]   is flexible and  data driven. We allow for uncertainty in the 
principal’s allocation rule by not restricting the choice probability to be zero/one as 
in (say) scoring auctions. This uncertainty may be due to other factors considered 
beyond the bid components. Also, the auctioneer’s choice may be the result of some 
information learned from the bid compositions   (a, b)   and   ( a −i  ,  b −i  )  . Our approach 
does not exclude such a possibility as  C [ ·,  …, · | n]   is a nonparametric function of  
a, b,  a −i  ,  b −i   .

Next, we consider identification of   G  a −  , b −  | θ 1  , θ 2     ( a −i  ,  b −i   |  θ 1i  ,  θ 2i  , n)   in (7). We 
note that the system (3)–(4) leads to the best responses   a i   = a ( θ 1i  ,  θ 2i  , n)   and  
  b i   = b ( θ 1i  ,  θ 2i  , n)  . The next assumption says that this relationship is invertible.

ASSUMPTION 4: The mapping   ( θ 1  ,  θ 2  )  →  [a ( θ 1  ,  θ 2  , n) , b ( θ 1  ,  θ 2  , n) ]   is invertible.

A necessary condition for Assumption 4 is that the system   V a   (a;  θ 1  ,  θ 2  )  =  
Y 1    and  V (a;  θ 1  ,  θ 2  )  =  Y 2    has at most a unique solution in   ( θ 1  ,  θ 2  )   for any triplet  
  (a,  Y 1  ,  Y 2  )  . This condition becomes necessary and sufficient when bidders’ private 
information is independent because the  right-hand sides of (3)–(4) are independent 
of   ( θ 1  ,  θ 2  )  . It is satisfied for the example  V (a;  θ 1  ,  θ 2  )  =  (1 − a) p  θ 1   −  θ 2    as shown 
below. In the online Appendix, we show that it is satisfied by the option value  V (a;  θ 1  ,  
 θ 2  )   given by (1). Assumption 4 implies   G  a −  , b −  | θ 1  , θ 2     ( a −i  ,  b −i   |  θ 1i  ,  θ 2i  , n)  =  G  a −  , b −  |a,b   ( 
a −i  ,  b −i   |  a i  ,  b i  , n)  . Thus, the winning probability (7) can be written as  P (a, b |  a i  ,  b i  ,  
n)  .15 The conditional bid distribution   G  a −  , b −  |a,b   ( ·,  …, · | ·, ·, n)   is identified from 
the joint distribution  G ( ·,  …, · | n)   of the bid pairs   ( a 1  ,  b 1  ) ,  …,  ( a n  ,  b n  )  . Thus  
 P ( ·, · | a, b, n)   is identified from observables. Hence, its derivatives   P a   ( ·, · | a, b, n)   
and   P b   ( ·, · | a, b, n)   are also identified.

With this information in hand, we rewrite the system (3)–(4) as

(8)   V a   (a;  θ 1  ,  θ 2  )  = −   
 P a   (a, b | a, b, n) 

  _  
 P b   (a, b | a, b, n)    ,

(9)  V (a;  θ 1  ,  θ 2  )  = b +   
P (a, b | a, b, n) 

  _  
 P b   (a, b | a, b, n)   . 

This system identifies the bidder’s private information   ( θ 1  ,  θ 2  )   from his observed bid   
(a, b)  . For instance, if the contract value is of the form  V (a;  θ 1  ,  θ 2  )  =  (1 − a) p  θ 1   −  
θ 2   , then   θ 1   =  P a   (a, b | a, b, n) / [p  P b   (a, b | a, b, n) ]   and   θ 2   =  (1 − a) [ P a   (a, b | a, b, n) 
/   P b   (a, b | a, b, n)  ] − b − [P (a, b | a, b, n)  /  P b   (a, b | a, b, n) ]  are identified. Once the pair   
( θ 1  ,  θ 2  )   is identified for every bidder, the joint type distribution  F ( ·,  …, · | n)   is 
identified as stated next.

15 This probability is similar to   G B|b   (b |  b i  )   in the case of  first-price  sealed-bid auctions where  b  denotes an 
arbitrary bid and  B  is the maximum of the competitors’ bids. See, e.g., Laffont and Vuong (1996) and Li, Perrigne, 
and Vuong (2002).
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PROPOSITION 1: Under Assumptions 1–4, the bidder type   ( θ 1  ,  θ 2  )   associated 
with bid   (a, b)   is identified. Therefore, the joint type distribution  F ( ·,  …, · | n)   is 
identified.

The separate identification of   ( θ 1  ,  θ 2  )   implies that bidders’ types cannot be 
reduced to scalar representations. To provide a contrasting example, suppose that 
royalties were levied on profit instead of revenue. The value function would be  
 V (a;  θ 1  ,  θ 2  )  =  (1 − a)  (p  θ 1   −  θ 2  )   and   V a   (a;  θ 1  ,  θ 2  )  = −  (p  θ 1   −  θ 2  )  . Thus,   ( θ 1  ,  θ 2  )   
can replaced by the “aggregate” type  t = p  θ 1   −  θ 2    in (8)–(9). This implies that 
all   ( θ 1  ,  θ 2  )   pairs such that  p  θ 1   −  θ 2   = t  are observationally equivalent. This case 
is ruled out by Assumption 4, which requires that   θ 1    and   θ 2    play distinctive roles in 
determining the bid components.16

C. An Estimation Method

The estimation method follows the identification argument. There are several 
possible estimation methods ranging from nonparametric to parametric ones. We 
adopt a semiparametric procedure. In auction models, the equilibrium strategies 
depend on the whole distribution of bidders’ private information. Thus, estimat-
ing a few moments of this distribution is not sufficiently informative. Because 
one has little information on this distribution, and parametric families can lead to 
an inadequate fit to the observed bid distributions, we favor data driven methods 
to uncover the bidders’ private information distribution. This is important as this 
latent distribution drives the economics and counterfactuals. We present an esti-
mation method taking into account (i) functional form flexibility, (ii) the curse of 
dimensionality associated with nonparametric estimators, and (iii) interpretability 
of results. First, we estimate the conditional density of bid pairs semiparametri-
cally by    g ˆ    a −  , b −  |a,b   ( ·,  …, · | ·, ·, n)   using a Gaussian copula upon estimating the 
marginal bid densities nonparametrically. Second, we estimate the choice prob-
ability that a bidder wins with bid components   (a, b)   when his opponents bid  
  ( a −  ,  b −  )   by   C ˆ   [a, b,  a −  ,  b −   | n]   via sieve approximation of the conditional expecta-
tion  E [W = 1 | a, b,  a −  ,  b −  , n]  . Third, by (7) we estimate the winning probability by  
  P ˆ   ( ·, · | ·, ·, n)   as a composite function of   G ˆ   ( ·,  …, · | n)   and   C ˆ   [a, b,  a −  ,  b −   | n]  .  
Finally, using   P ˆ   ( ·, · | ·, ·, n)  , we solve the system (8)–(9) at each observed bid  
  ( a iℓ  ,  b iℓ  )   to estimate the bidder type   ( θ 1iℓ  ,  θ 2iℓ  )  . Using the latter, we estimate the 
joint density of   ( θ 11  ,  θ 21  ,  …,  θ 1n  ,  θ 2n  )   semiparametrically using a Gaussian copula. 
Readers who wish to skip the technical details may proceed to Section III for the 
estimation results.

We omit the exogenous variables   Z ℓ    characterizing contract  ℓ  and incorporate 
them in Section IID. We impose exchangeability of distributions/densities through-
out since bidders are symmetric. We first estimate the conditional bid density   g  a −  , b −  |a,b   
( · |  a i  ,  b i  , n)  . This density is the ratio of the  2n -variate joint density  g ( ·,  …, · | n)   
over the bivariate density   g a,b   ( ·, · | n)  . To alleviate the curse of dimensionality, we 
use the semiparametric estimator of Genest, Ghoudi, and Rivest (1995) for the  

16 Aggregating types is traditionally used in mechanism design with multidimensional screening. See Armstrong 
(1996) and Rochet and Stole (2003). Our best response approach avoids this technique.
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 2n -multivariate joint density  g ( ·,  …, · | n)   of bid pairs. This requires estimating the 
two marginal distributions   G a   ( · | n)   and   G b   ( · | n)  , which are obtained by integrating 
the kernel density estimators    g ˆ   a   ( · | n)   and    g ˆ   b   (· | n)  . For interpretability of empirical 
results, we choose the Gaussian copula density   c 2n   ( ·,    …, ·; R) , where the subscript  
2n  indicates its dimension and  R  is the correlation matrix. Exchangeability imposes 
equalities on the correlation coefficients, thereby reducing  R  to the four correlations  
  ρ  a 1   b 1     ,   ρ  a 1   b 2     ,   ρ  a 1   a 2     , and   ρ  b 1   b 2      that are estimated by maximizing with respect to  R  the 

likelihood   ∏ ℓ=1   L n       c 2n   [  G ˆ   a   ( a 1ℓ   | n) ,   G ˆ   b   ( b 1ℓ   | n) ,  …,   G ˆ   a   ( a nℓ     | n),   G ˆ   b   ( b nℓ   | n) ; R] , where   
L n    is the number of auctions with  n  bidders. This gives the estimated joint density   
c 2n   [  G ˆ   a   ( a 1   | n) ,   G ˆ   b   ( b 1   | n) ,  …,   G ˆ   a   ( a n   | n) ,   G ˆ   b   ( b n   | n) ;  R ˆ  ]  ∏ j=1  n     g ˆ   a   ( a j   | n)      g ˆ   b   ( b j   | n)   as well 

as the bivariate marginal density   c 2   [  G ˆ   a   ( a i   | n) ,   G ˆ   b   ( b i   | n) ;   ρ ˆ    a 1   b 1    ]    g ˆ   a   ( a i   | n)     g ˆ   b   ( b i   | n)  . The 

ratio of these two gives    g ˆ    a −  , b −  |a,b   ( a −  ,  b −   |  a i  ,  b i  , n)  .
Second, we estimate the choice probability  C [a, b,  a −  ,  b −   | n]   

= E [W = 1 | a, b,  a −  ,  b −  , n]  , where  W  indicates that the bidder wins. We 
approximate this expectation with sieves. To alleviate the curse of dimension-
ality, we reduce the number of arguments by considering differences in bid 
components, namely  C (a −  a −  , b −  b −   | n)  . When  n = 2 , the  log-likelihood is  
  ∑ ℓ=1   L 2      { W 1ℓ   log C ( a 1ℓ   −  a 2ℓ  ,  b 1ℓ   −  b 2ℓ  )  +  W 2ℓ   log [1 − C ( a 1ℓ   −  a 2ℓ  ,  b 1ℓ   −  b 2ℓ  ) ] }  , 
where   L 2    is the number of auctions with two bidders and   W iℓ   = 1  ( = 0 ) if bidder  i  
is the winner (loser). The function  C ( ·, · )   is approximated with Bernstein polyno-
mials while imposing it to be increasing in both arguments in view of Assumption 
2.17

Third, given    g ˆ    a −  , b −  |a,b   ( ·,  …, · | ·, ·, n)   and   C ˆ   (a −  a −  , b −  b −   | n)  , we estimate  
 P ( ·, · | ·, ·, n)   as

(10)   P ˆ   ( ·, · | a, b, n)  =  ∫ 
 
  
 
   C ˆ   ( · −  a −  , · −  b −   | n)    g ˆ    a −  , b −  |a,b   ( a −  ,  b −   | a, b, n)  d a −   d b −  . 

This integral can be computed using Monte Carlo integration. Its partial deriva-
tives with respect to the first two arguments are estimated by differentiating inside 
the integral. In the last step, we solve the system (8)–(9) with the estimated win-
ning probabilities and derivatives evaluated at each observation   ( a iℓ  ,  b iℓ  )  . This gives  
  (  θ ˆ   1iℓ  ,   θ ˆ   2iℓ  )  ,  i = 1,  …,  n ℓ   ,  ℓ = 1,  …,  L n   . We can also estimate the marginal den-
sity of the cost per unit    θ ˆ   2ℓ   /   θ ˆ   1ℓ   , which provides interesting economic content. This 
step is performed using a kernel density estimator subject to some trimming to cor-
rect for boundary effects following Guerre, Perrigne, and Vuong (2000). To assess 
the degree of type dependence within and between bidders, we use a Gaussian cop-
ula estimator as above while imposing exchangeability of the joint type distribution.

17 When  n = 3 , the likelihood becomes   ∑ ℓ=1   L 3      { W 1ℓ   log C ( a 1ℓ   −  a 2ℓ  ,  b 1ℓ   −  b 2ℓ  ,  a 1ℓ   −  a 3ℓ  ,  b 1ℓ   −  b 3ℓ  )   
+  W 2ℓ   log C ( a 2ℓ   −  a 1ℓ  ,  b 2ℓ   −  b 1ℓ  ,  a 2ℓ   −  a 3ℓ  ,  b 2ℓ   −  b 3ℓ  )   +  W 3ℓ   log C ( a 3ℓ   −  a 1ℓ  ,  b 3ℓ   −  b 1ℓ  ,  a 3ℓ   −  a 2ℓ  ,  b 3ℓ   −  b 2ℓ  ) }  , where   
L 3    is the number of auctions with three bidders. We impose that (i) the three choice probabilities sum up to one, (ii) 
the first and second arguments are exchangeable with the third and fourth arguments in the choice probabilities, and 
(iii) the choice probability is increasing in all its arguments. These restrictions are imposed on the coefficients of the 
Bernstein polynomial expansion which are estimated by maximum likelihood after normalization of each argument 
to the interval   [0, 1]   through its quantile.
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D. Incorporating Auction Covariates

We now discuss how to introduce auction covariates in the estimation method. 
We consider a vector   Z ℓ    of covariates in the estimation of the  2n -variate joint bid dis-
tribution  G ( ·,  …, · | z, n)   and the choice probability  C (a, b,  a −  ,  b −   | z, n)  . This leads 
to the winning probability  P (a, b | a, b, z, n)   in (10). To alleviate the curse of dimen-
sionality, we propose a demeaning approach using an index to account for auction 
heterogeneity in the estimation procedure, as in Haile, Hong, and Shum (2003).

Given  n , we estimate the means of   a iℓ    and  log  b iℓ    conditional on   Z ℓ    using a 
“ leave-one-out” regression of   a iℓ    and  log  b iℓ    on   Z ℓ   , respectively.  Leave-one-out refers 
to not using data from auction  ℓ  when predicting the means for auction  ℓ . To esti-
mate the joint bid distribution, we convert each observed   a iℓ    and  log  b iℓ    to deviations 
from the  leave-one-out conditional mean royalty   E ˆ   ( a −ℓ   | z, n)   and logarithm of cash 
bid   E ˆ   (log  b −ℓ   | z, n)  , respectively. This normalizes the bids and allows pooling of 
bids across heterogeneous auctions. Let    a ̃   iℓ   =  a iℓ   −  E ˆ   ( a −ℓ   | z, n)   and    b ̃   iℓ   = log  b iℓ    
−  E ˆ   (log  b −ℓ   | z, n)   denote these normalized bids distributed as   G ̃   ( ·,  …, · | n)  .  
Using the estimation method in Section  IIC, the estimated conditional density  
  g ˆ   ( ·,  …, · | z, n)   is obtained from   g ˆ   ( a 1  ,  b 1  ,  …,  a n  ,  b n   | z, n)    ≡  c 2n   (  G ̃   a   (  a ̃   1   | n) ,  …,  
  G ̃   b   (  b ̃   n   | n) ;  R ˆ  )   Π  j=1  n     g ̃   a   (  a ̃   j   | n)    g ̃   b   (  b ̃   j   | n)  .

To estimate the choice probability  C (a −  a −  , log b − log  b −   | z)   for  n = 2 , we 
reduce the dimensionality of  z  through the  leave-one-out conditional expectation  
 E (log  b −ℓ   | z, n)   defined above by adding   E ˆ   (log  b −ℓ   | z, n)   as an argument to the choice 
probability, i.e.,  C (a −  a −  , log b − log  b −  ,  E ˆ   (log  b −ℓ   | z, n) )  . We then follow the esti-
mation procedure of Section IIC to obtain   C ˆ   ( ·, ·, ·)  . With these estimates in hand, 
following (10) we obtain   P ˆ   ( ·, · | a, b, z, n)  =  ∫    

 
   C ˆ   ( · −  a −  , · − log  b −  ,  E ˆ   (log  b −   | z, n) )   

  g ˆ    a −  , b −  |a,b,z   ( a −  ,  b −   | a, b, z, n)  d a −   d b −   , and its derivatives    P ˆ   a   ( ·, · | a, b, z, n)   and  
   P ˆ   b   ( ·, · | a, b, z, n)   by numerical differentiation.

Lastly, the type distribution depends on the covariates   Z ℓ   , which are aggregated 
in the single index   E ˆ   (log  b −ℓ   | z, n)   that we normalize through its quantile  q (z, n)  .  
Upon estimating   (  θ ˆ   1iℓ  ,   θ ˆ   2iℓ  )   for  i = 1, 2  and  ℓ = 1,  …,  L 2    by solving (8)–(9), we 
assess the degree of affiliation among   ( θ 11  ,  θ 21  ,  θ 21  ,  θ 22  , q (z, n) )   using a Gaussian 
copula with smooth kernel estimates of the marginal distributions as explained in 
Section IIC.

III. Estimation Results

This section presents the estimation results for the Louisiana oil lease auction data 
preceded by a description of the covariates that characterize auction heterogeneity.

A. Characterizing Auction Heterogeneity

We present additional data sources needed in the computation of the option value. 
For the  one-year  risk-free interest rate  r , we convert the nominal  one-year treasury 
rates from the Board of Governors of the Federal Reserve System (1953–2018) to 
real rates via application of the Fisher equation, using percentage changes in the 
GDP implicit price deflator from the Bureau of Economic Analysis (1947–2017) as 
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a measure of inflation. We use the latter to adjust all values subject to inflation. For 
the oil price  p , we use the West Texas Intermediate price provided by the Federal 
Reserve Bank of St. Louis ( 1974–2003). Including  p  as a covariate allows the dis-
tribution of   θ 1   ,   θ 2    to be conditional on  p . For the volatility  σ , we use the expected 
volatility implied by contemporary crude oil option prices.18 Since crude oil options 
have been traded since November 1986, we use bids from 1987 onwards in the last 
step which estimates the joint type distribution by solving (8)–(9). For more details 
on the derivation of implied volatility, see the online Appendix.

In addition to the oil price, volatility and interest rate which enter in the option 
value, bids depend on other characteristics that we now define. To account for geo-
graphical and geological heterogeneity, we use historical data from Drillinginfo 
( 1962–2018) to compute a production index based on production in the lease’s 
township during the five years preceding its auction. To account for unobserved geo-
graphical and geological heterogeneity, following Kong (2020), we exploit the spa-
tial continuity of  land-based heterogeneity to construct smooth and  location-based 
“heatmap” indices as follows. To first eliminate time effects from the indices, we 
regress observed bid components on year fixed effects and obtain the residuals. We 
then define heatmap royalty and cash indices for each tract as the residuals pre-
dicted by geographic location. Hereafter we consider the logarithm of the cash com-
ponent because of its skewness from Table 1. The predictions are obtained from 
 leave-one-out local quadratic regressions of the residuals on geographic coordinates 
of the lease township. The prediction for auction  ℓ  uses only those auctions occur-
ring up to the auction year to avoid using information from the “future.” Lastly, 
for some auctions, the royalty recipient is a state agency other than the Louisiana 
Department of Natural Resources (DNR), which is captured by a dummy.19

Table 3 gives the results of the regressions of the bid components on the auction 
covariates using the full sample of 1,291 bids. As year fixed effects are included, 
the monthly oil price and interest rate do not always have statistically significant 
coefficients. The logarithm of the cash bid per acre is affected by acreage and its 
square. When the royalty recipient is not the DNR, there is a negative effect on both 
bid components suggesting that these leases are less desirable. Lastly, leases with 
larger heatmap indices attract higher bid components, suggesting that these indices 
successfully capture unobserved geographical and geological heterogeneity.

B. Estimation Results

Given that 80 percent of the dataset contains two bidders per auction, we present 
the results for  n = 2 . Data on implied volatility are available after 1987. To exploit 
the maximum number of observations, we estimate the winning probability using 
the 904 (452 auctions times 2) bids including observations before 1987.20 Figure 3 
plots level contours of the estimated pairwise choice probability at the median value 
of the quality index  q (z)   along with the observations. The contours, ranging from 

18 Access to crude oil option price data was purchased from the CME Group Inc. (1987–2003).
19 This data are obtained from the Louisiana DNR (1974–2003a).
20 Because the nonparametric estimation of the choice probability is data demanding, we pool the data across  n  

and consider the  n − 1  pairs   (a −  a −  , log b − log  b −  )   when estimating  C ( ·, ·, · )  .
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0.1, 0.2, …, 0.9, show the transition from low to high probability of being chosen as 
bid components increase.

Because the option value is a function of implied volatility, we estimate bid-
ders’ types using the 258 (129 times 2) bids after 1987. The estimated values for   
θ 1    (expected production volume) are mostly between 100 and 3,000 barrels per 
acre. Though we have not used any ex post information on production, our esti-
mates are comparable to general statistics on onshore oil production. Based on 
data from Drillinginfo, the median township in our data produces about 270,000 
 barrel-of-oil-equivalents per well. Conditional on the median quality index, our esti-
mate of expected production is 700 barrels per acre or about 230,000 barrels for the 
 average-sized lease, which is close to the actual production statistic. We also exam-
ine the relationship between expected production volume    θ ˆ   1    and realized production 
from wells spudded in the lease’s township during the three years following its auc-
tion.21 As there are no such wells for many of the auctioned leases, we estimate a 
type I Tobit model of log realized production on log    θ ˆ   1    treating the latent volume of 
production as censored from below at the minimum observed  nonzero value in the 
sample. The estimated Tobit coefficient is 0.71 with standard error 0.24, meaning a 

21 Since we do not have production data at the lease level, as a substitute, we use knowledge of each lease’s 
township and auction date to compute production from wells spudded in the lease’s township during the three years 
following the auction.

Table 3—Reduced-Form Analysis of Bids

log(cash per acre) Royalty

Oil price 0.002 0.001
(0.004) (0.000)

Interest rate 3.131 0.305
(2.371) (0.126)

log(acreage) −0.661 −0.004
(0.215) (0.011)

log(acreage)      2  0.058 0.000
(0.020) (0.001)

Royalty recipient not DNR −0.342 −0.013
(0.068) (0.004)

Township production index 0.000 0.000
(0.005) (0.000)

Heatmap log cash index 0.425
(0.040)

Heatmap royalty index 0.178
(0.031)

Constant 8.128 0.204
(0.598) (0.032)

Year fixed effects Y Y
Number of bidder fixed effects Y Y
Observations 1,291 1,291
  R   2  0.204 0.137
Adjusted   R   2  0.178 0.109

Notes: Table shows ordinary least squares regression of the log cash bid per acre and royalty 
bid, respectively, on covariates that describe the auctioned lease. Observations are at the bid 
level. Standard errors are in parentheses.
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one percent higher value of    θ ˆ   1    is associated with a 0.71 percent higher value of latent 
production at the township level.

Figure 4 plots the density of the per unit cost    θ ˆ   2   /   θ ˆ   1   . This ratio represents the 
cost per barrel of production, which is a more intuitive measure of cost than    θ ˆ   2   . 
Our median estimate of cost per barrel is $21 in 2009 dollars, which is comparable 
to figures reported by the Wall Street Journal.22 Figure 4 includes a vertical dotted 
line representing the sample average firm’s revenue per barrel   (1 − a) p . Assuming a 
fixed revenue per barrel, this gives a rough idea of which firms would exercise their 
options, i.e., develop their tracts. Firms to the left of this value would exercise their 
option, while firms to the right would not. As there is a substantial mass to the right, 
Figure 4 provides a rationale as to why so many leases remain undeveloped in the 
United States.23 Next, we discuss the estimated correlation matrix of the joint den-
sity of types  ( θ 11  ,  θ 21  ,  θ 12  ,    θ 22  )  and the index  q (z)  . The correlation coefficient between  
  θ 1i    and   θ 2i    is 0.86 indicating correlation between production and cost. The correla-
tions between bidders (0.81 for production and 0.90 for cost) show affiliation of 
private information among bidders. If production and cost are expected to be high 
for one bidder, they are likely to be high for the other bidder as well. Lastly, the 

22 See graphics.wsj.com/oil-barrel-breakdown/.
23 The Department of the Interior reports that by the end of 2011, about 56 percent of total acres of public land 

under lease in the lower 48 states are not undergoing either production or exploration activities.

Figure 3. Estimated Choice Probability

Notes: Solid lines plot level contours of the estimated probability that  royalty-cash bid   (a, b)   is chosen over a com-
peting bid   (a′, b′)  , as a function of  a − a′  and  ln b − lnb′ , at the median value of the quality index  q (z)  . The contours 
range from 0.1, 0.2,  …, 0.9. Bids in the observed pairwise choices used to estimate the probabilities are plotted in 
the background, with winning bids in circles and losing bids in triangles.
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correlation between the types and the quality index  q (z)   is 0.68 for both production 
and cost, confirming the explanatory power of tract heterogeneity through our index  
q (z)  . Part of the correlation among the components   ( θ 11  ,  θ 21  ,  θ 12  ,  θ 22  )   is due to their 
collective correlation with  q (z)  .

In light of the government’s concern about undeveloped tracts, we assess the mod-
el’s predicted development rate. We compare the ex ante predicted exercise probability  
Φ (x − σ  √ 

_
 t  )   to the ex post observed probability of development. We consider a tract 

developed if the Louisiana DNR has a record of receipts of royalties from the lease or 
of a well attached to the lease. Our average predicted ex ante exercise probability is 
equal to 0.44. For the same set of leases, we observe an exercise probability of 0.42. 
The closeness of these two values assesses the good fit of our model. Indeed, our 
model and our estimates of production and cost are consistent with the observed low 
rate of development, though we did not use any  post-auction information in estima-
tion. Relating to our discussion of Figure 4 above, our model explains this phenome-
non by moral hazard induced by the combination of bidders’ production costs, royalty 
bidding, and the optional nature of production. The option model also explains why 
firms are willing to pay for leases they may not develop. Even if the oil price is below 
the “strike price” at the time of auction, the leases have option value.

IV. Counterfactual Analysis

 Fixed-royalty auctions are commonly used for public mineral leasing in the 
United States. In that auction format, the principal fixes the royalty rate and bidders 

Figure 4. Marginal Density of Unit Cost

Notes: Figure plots kernel density of the estimated cost per unit of production,    θ ˆ   2   /   θ ˆ   1   . Solid line shows estimates 
from the European option model, and  dash-dot line shows estimates from the American option model. Vertical 
dashed line marks $21.7, the sample average of firms’ per unit revenue after paying royalties.
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bid on the cash payment only, leading to  one-dimensional bidding. Since little is 
known about optimal auction design with multidimensional private information, we 
compare our  cash-royalty auctions to  fixed-royalty auctions. In addition, since scor-
ing auctions are the most studied  multi-attribute auctions, we also investigate their 
performance. Lastly, in view of recent policy debates on the poor performance of 
oil lease auctions in the United States, we assess the effects of increasing the lease 
duration and exploiting auction timing.

Regarding the pros and cons of  cash-royalty versus  fixed-royalty auctions, allow-
ing competitive forces to determine royalties can potentially reap a higher share of 
revenue for the principal by driving up royalties on strong tracts while increasing 
the development probability by driving down royalties on weak tracts. Royalty rates, 
however, could be too high, exacerbating moral hazard, or too low, ceding informa-
tion rents to the winner. Also,  cash-royalty bidding gives firms more room to exploit 
information asymmetry. This adverse selection can depress the principal’s revenue 
and distort lease allocation. In our counterfactual, we investigate whether the pros 
outweigh the cons.

Asker and  Cantillon (2008) show that the principal is better off using a 
 price-quality scoring auction than imposing a fixed quality and selecting the winner 
on the basis of price only.  Cash-royalty auctions differ, however, from  price-quality 
auctions in two key aspects. First, the winning bidder chooses whether to develop 
the lease, while his incentives are affected by the endogenous royalty. Second, since 
royalty revenue depends on the exercise probability and production volume, the 
principal’s payoff   e   −rt  ap  θ 1   Φ (x)  + b , where  x  is given in (2), depends directly on 
bidders’ private information. This is not the case in a  price-quality scoring auction, 
where the principal’s payoff is entirely determined by the observable bid compo-
nents (price, quality). The bidder can exploit this extra gap created by asymmetric 
information in  cash-royalty auctions by trading off cash and royalty to the detriment 
of the principal.24

A.  Cash-Royalty versus  Fixed-Royalty Auctions

We compare the observed  cash-royalty auctions to simulated  fixed-royalty 
auctions. Using our estimation results, we simulate auctions with a fixed royalty 
ranging from 0 percent to 50 percent. For a fixed royalty A, we compute for every 
bidder  i  in auction  ℓ  the lease value   V iℓ   = V (A;   θ ˆ   1iℓ  ,   θ ˆ   2iℓ  )  . Using random draws  
  ( θ  11ℓ  s  ,  θ  21ℓ  s  ,  θ  12ℓ  s  ,  θ  22ℓ  s  )   from   F ˆ    ( ·, ·, ·, · | q ( Z ℓ  ) , n)  , we simulate the joint value distri-
bution   F  V 1  , V 2  |q (Z)    ( ·, · | ⋅, n)   for  n = 2 . Second, from Milgrom and Weber’s (1982) 
equilibrium in a  first-price  sealed-bid auction with affiliated private values, we com-
pute the cash bid that each bidder would have submitted in a  fixed-royalty auction. 
We use notation  A  for a fixed royalty and  a  for a royalty bid.

In Figures 5–7, the solid curve represents the outcome of the  fixed-royalty auc-
tion with  A  on the  x -axis. For comparison, the horizontal dashed line represents the 
outcome of the Louisiana  cash-royalty auction. We examine royalty revenue, cash 
revenue and their sum which gives total government revenue. Figure 5 displays the 

24 Thus the proof of Asker and Cantillon (2008, Theorem 6) no longer applies, and the superior performance of 
scoring auctions is no longer guaranteed.
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ex ante expected royalty revenue given by   e   −rt  pA  θ 1   Φ (x)   from (1)–(2). The solid 
curve exhibits a Laffer curve, in which royalty revenue initially rises but eventually 
falls after  A = 43  percent as moral hazard overwhelms the gains from taking a 
higher share of revenue because a higher royalty induces a lower exercise probabil-
ity. The average royalty from the Louisiana  cash-royalty auction is 23 percent (verti-
cal dotted line). We see that royalty revenue would have been similar had the royalty 
been fixed at 23 percent. Thus, allowing flexibility in royalties would not achieve 
any benefit compared to fixing it at the average. Meanwhile, Figure 6 displays cash 
revenue. Higher fixed royalties decrease the cash bid because bidders’ lease values 
decline as  A  increases. We find that the Louisiana  cash-royalty auction gives $112 
per acre or 11 percent less in cash than the 23 percent  fixed-royalty auction.

Figure 7 displays total government revenue. The Louisiana auctions outperform 
 fixed-royalty auctions when the fixed royalty is either higher than 48 percent or 
lower than 18 percent: this includes the federal fixed rate of 12.5 percent. For middle 
royalties ranging from 19 to 47 percent, the  fixed-royalty auction outperforms the 
Louisiana auction. This includes the 25 percent rate common on private lands. In 
this middle range, the adverse selection effects of  cash-royalty bidding dominate the 
benefits of royalty flexibility. As a result, a 23 percent  fixed-royalty auction would 
generate an average gain of 4 percent or $103 per acre relative to the  cash-royalty 
auction. Meanwhile, the optimal royalty for  fixed-royalty auctions is 34 percent 
allowing a gain of 8 percent or $213 per acre compared to the  cash-royalty auction. 
This optimal royalty rate is higher than most rates seen in Table 1. This confirms that 

Figure 5. Royalty Revenue

Notes: Solid line displays ex ante expected royalty revenue from counterfactual simulations of  fixed-royalty auc-
tions, as a function of the fixed royalty rate displayed on the  x -axis. For comparison, the horizontal dashed line 
marks ex ante expected royalty revenue from observed bids in the Louisiana (LA)  cash-royalty auction, and the ver-
tical dotted line marks the average observed royalty rate resulting from that auction, 23 percent.
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Louisiana’s underperformance is not caused by high royalties per se but by adverse 
selection in the  cash-royalty combinations bidders choose.25

To get a sense of the firms’ surplus, we consider their information rents defined as 
the firm’s ex ante value for the contract  V (a;  θ 1  ,  θ 2  )   evaluated at the relevant royalty 
rate minus the cash payment. According to our simulations, bidders in Louisiana 
enjoy 4 percent or $ 52-per-acre larger information rents than under a 23 percent 
fixed royalty, consistent with greater adverse selection in the  cash-royalty auction. 
Meanwhile, one of the main concerns of the government is the low development 
rate. We find that royalty bidding in Louisiana does not yield special benefits for 
option exercise compared to fixing the royalty at 23 percent. Lastly, we consider 
social surplus defined as the firm’s lease value plus the government’s expected roy-
alty revenue, accounting for the endogenous probability of development. We find 
that royalty bidding in Louisiana does not yield special benefits for social surplus 
compared to fixing the royalty at 23 percent. Graphs associated with these simula-
tions are provided in the online Appendix.

25 See the online Appendix for an assessment of the allocative performance of  fixed-royalty auctions.

Figure 6. Cash Payment Revenue

Notes: Solid line displays expected cash revenue from counterfactual simulations of  fixed-royalty auctions, as a 
function of the fixed royalty rate displayed on the  x -axis. For comparison, the horizontal dashed line marks cash 
revenue from observed bids in the Louisiana  cash-royalty auction, and the vertical dotted line marks the average 
observed royalty rate resulting from that auction, 23 percent.
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B. Scoring versus  Fixed-Royalty Auctions

Scoring auctions, especially with  quasi-linear scoring rules, are the most studied 
class of  multi-attribute auctions. In light of Asker and Cantillon (2008), one may 
wonder whether the underperformance of  cash-royalty relative to  fixed-royalty bid-
ding is specific to Louisiana’s allocation rule. To investigate this question, we con-
sider the  quasi-linear scoring rule  S (a, b)  = b − ωp /  a   ρ  , increasing in both  a  and  b , 
where  ω > 0  is a weight on the royalty component and  ρ > 0  defines the curvature 
with respect to it. A higher  ρ  increasingly discourages  low-end and  high-end roy-
alty rates. We also allow the royalty component to carry more weight with oil price  
 p . We simulate the outcome of scoring auctions for values of  ρ = 1, 2,  …, 10 . For 
each  ρ , we perform a grid search for the optimal weight  ω  maximizing expected 
government revenue.

The first row of Table 4 displays  E [ (b −   b ¯  ) / (s −   s 
¯
  ) ]  , the expected portion of 

the score that is due to the cash payment  b , where    b ¯    and    s 
¯
    are the minimum of cash 

and score values, respectively. This portion ranges from 0.35 to 0.51. We simulate 
scoring auction outcomes using a  second-score mechanism for computational ease. 
Correspondingly, we use a  second-price auction to simulate the  fixed-royalty auc-
tion for comparison. With a  quasi-linear score, Asker and Cantillon (2008) show 
that the  second-score auction induces the same royalty choice as in a  first-score 
auction because the royalty choice is independent of the score a bidder is trying to 

Figure 7. Government Revenue

Notes: Solid line displays ex ante expected total government revenue, which is the sum of cash and royalties, from 
counterfactual simulations of  fixed-royalty auctions, as a function of the fixed royalty rate displayed on the  x -axis. 
For comparison, the horizontal dashed line marks ex ante expected total government revenue from observed bids 
in the Louisiana  cash-royalty auction. For reference, vertical dotted lines mark the standard royalty rate on federal 
leases, 12.5 percent, and the prevalent royalty rate on privately held lands, 25 percent.
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achieve. We compute the optimal royalty bid and cash bid for each bidder. The last 
two rows of Table 4 show the mean and median royalty bids given each  ρ . For all 
simulated values of  ρ , these scoring auctions would lead to higher royalty rates on 
average than those observed in Louisiana.

Figure 8 displays the variance of royalty bids in a dashed curve and the gov-
ernment’s total revenue per acre in a solid curve with  ρ  on the  x -axis. As the 
curvature  ρ  increases, the variance of royalties decreases and the government’s 
revenue increases to approach that of the optimal  fixed-royalty auction. These 
results confirm a consistent pattern: reducing or eliminating  bidder-driven royalty 
variance improves revenue for the government. Indeed, the  fixed-royalty auction 
achieves a better outcome even though the weights  ω  were chosen optimally in 
the scoring auctions. Table 5 provides more details on  fixed-royalty versus scor-
ing auctions with  ρ = 1 . In the former, the optimal royalty is about 30 percent. 
The scoring auction would lead to a loss of $800 per acre in royalty revenue that 
is not recouped in cash revenue which increases by only $654. This leads to a 5 
percent decrease in total government revenue, while yielding 38 percent higher or 
$356 of additional information rents to firms. Thus, adverse selection outweighs 
the potential benefits of royalty flexibility in this class of scoring auctions. In 
contrast, Table 5 suggests that the scoring auction may induce a higher exercise 
probability and higher social surplus than the optimal  fixed-royalty auction. Also, 
total government revenue from this scoring auction exceeds that of the Louisiana 
 cash-royalty auction.

To summarize,  fixed-royalty auctions would yield higher government reve-
nue than the current  cash-royalty format and  quasi-linear scoring auctions. Since 
 fixed-royalty auctions are straightforward to implement, fixing the royalty seems 
the more reliable way to auction lease contracts. This policy recommendation con-
trasts with conventional wisdom from  price-quality auctions, providing new insights 
on incentive contracts and the merits of  multi-attribute auctions. This is not to say 
that superior multidimensional mechanisms do not exist. They may just take more 
complex forms. Taking cues from Asker and Cantillon (2010), such a mechanism 
may have allocation rules that cannot be summarized by a scoring function. It could 
involve the principal designing a menu of contracts or revising the current contract 
form. What superior mechanisms look like are open questions given multidimen-
sional private information.

Table 4—Details of  Quasi-Linear Scoring Auctions

 ρ 1 2 3 4 5 6 7 8 9 10

 E [ (b −  b 
¯
  )  /  (s −  s 

¯
  ) ]  0.51 0.35 0.41 0.42 0.44 0.46 0.49 0.48 0.45 0.47

Mean royalty bid 0.37 0.41 0.31 0.32 0.33 0.31 0.30 0.31 0.32 0.32
Median royalty bid 0.20 0.26 0.25 0.27 0.28 0.28 0.28 0.31 0.32 0.32

Notes: We counterfactually simulate  second-score auctions with  quasi-linear scoring rules of the form  
 S (a, b)  = b − p (ω/ a   ρ )  , where  a  and  b  are the royalty and cash components of the bid, respectively,  p  is the oil 
price,  ω  is a  revenue-maximizing weight, and  ρ  determines the curvature of the scoring function. Table columns 
from left to right show auction outcomes associated with  ρ = 1, 2,  …, 10 . The first row shows the expected por-
tion of the score that is due to the cash payment  b , where   b 

¯
    and   s 

¯
    are the minimum of cash and score values, 

respectively.
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C. Alternative Policies: Lease Duration and Timing

Some industry voices have argued that the rate of development would increase 
if leases were longer. The  three-year lease in Louisiana is shorter than the  five-year 
lease in New Mexico and the  ten-year federal lease. We simulate  fixed-royalty auc-
tions for a  six-year lease thereby doubling the observed duration. We present results 
for the American option valuation to emphasize that firms can exercise their option 

Figure 8. Scoring Auctions

Notes: The solid line and dashed line plot simulated outcomes of a  second-score scoring auction with  quasi-linear 
scoring rule  S (a, b)  = b − p (ω/ a   ρ )  , as a function of curvature parameter  ρ . Given each  ρ , a  revenue-maximizing 
weight  ω  is used. The dashed line is to be read by the left  y -axis, and the solid line is to be read by the right  
 y -axis. For comparison, the horizontal  dash-dot line to be read by the right  y -axis marks simulated revenue from a 
 second-price  fixed-royalty auction with  revenue-maximizing fixed royalty (30 percent).
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Table 5— Fixed-Royalty versus Scoring Auctions

 Fixed-royalty auction Scoring auction,  ρ = 1 

Mean royalty 30% 37%
Median royalty 30% 20%
Total government revenue $2,889 $2,743
Royalty revenue $1,996 $1,196
Cash revenue $893 $1,547
Firm information rents $944 $1,300
Same allocation as  fixed-royalty — 0.97
Pr(option exercise) 0.41 0.45
Social surplus $3,832 $4,042

Notes: Table presents outcomes associated with counterfactual simulations of a  second-price 
 fixed-royalty auction in the first column, with  revenue-maximizing fixed royalty of 30 per-
cent, and a  second-score scoring auction in the second column, which uses a  quasi-linear scor-
ing rule  S (a, b)  = b − p (ω/ a   ρ )   with curvature  ρ = 1  and  revenue-maximizing weight  ω . 
Amounts are expressed in 2009 dollars and per acre.
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at any time during the lease. Our method for valuing American options is discussed 
in Section VA.

Though a longer lease duration could increase the ex ante exercise probability, 
this is not guaranteed. First, at any point in time, an agent possessing an American 
option compares the payoff of exercising it today to the continuation value of waiting 
for a potentially higher price. This continuation value is increasing in the remaining 
duration of the option. Thus, the  time-specific threshold for exercising the option 
is higher when the remaining duration is longer. Second, from an ex ante perspec-
tive, the later three years of a  six-year lease starting today are not equivalent to a 
 three-year lease starting today; they do not “cancel out” in a comparison. The start-
ing oil price for the latter is today’s price, while the starting oil price for the former is 
uncertain today and has a log normal distribution. The combined effects of the above 
on exercise probability are ambiguous. At all fixed royalties between 0 percent and 
50 percent, we find that increasing the lease duration decreases the ex ante exercise 
probability, which contradicts the popular belief. At a 23 percent fixed royalty, the 
decrease would be from 0.46 to 0.40. However, it does increase government revenue 
because it increases option values and hence cash bids. At a 23 percent fixed royalty, 
total revenue would increase by about 16 percent.

An alternative policy would be to exploit fluctuations in oil prices. As Louisiana 
has control over auction offerings, the DNR could withhold leases when oil prices 
are low and release them when oil prices are high. We simulate government revenue 
under  fixed-royalty auctions had oil prices been 20 percent higher than what they 
were at the time of the auction. The resulting increase in government revenue is 
at least 46 percent depending on the fixed royalty. From Table 2, higher oil prices 
increase not only the royalty dollars conditional on option exercise but also the exer-
cise probability, as well as option value and cash bids. This is a promising policy 
that states could pursue. The online Appendix provides figures showing additional 
details from these simulations.

V. Extensions

We discuss (i) the robustness of our results to the American option in which firms 
can exercise the option at any time and (ii) a general extension of our method.26

A. Robustness Analysis: American Option

To ensure that our conclusions are not sensitive to the  European-option specifi-
cation, we use a numerical procedure known as a binomial tree to value the lease as 
an American option and reestimate   ( θ 1  ,  θ 2  )   accordingly. Following Cox, Ross, and 
Rubinstein (1979) and Rendleman and Bartter (1979), the binomial option pricing 
model begins with a single node and each node connects to two nodes in the next 
period, one representing the probability that the oil price will go up, the other the 
probability that the oil price will go down. At each node, the agent chooses whether 
to exercise the option given the  node-specific oil price  p . The agent  exercises the 

26 The online Appendix contains discussions on bidders’ cash constraints, unobserved heterogeneity and com-
mon values.
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option at that node if   (1 − a) p  θ 1   −  θ 2    exceeds the continuation value. The value of 
the node is   (1 − a) p  θ 1   −  θ 2    if the option is exercised and the continuation value oth-
erwise. The value of the American option is then computed as the  present-discounted 
expected value of all nodes that extend from the first node. The fineness of the 
binomial tree is adjustable by the number of steps in the tree. As the number of 
steps grows large, the value of the binomial tree converges to the value of the 
option. See Hull (2017) for details. We use a binomial tree with 100 steps to value  
 V (a;  θ 1  ,  θ 2  )   and then use constrained optimization to estimate   ( θ 1  ,  θ 2  )   from (8)–(9).27 
The online Appendix explains how each step of the binomial tree evolves as a func-
tion of volatility  σ  and the number of steps. Figure 4 displays in a  dash-dotted line the 
estimated marginal density of the unit cost    θ ˆ   2   /   θ ˆ   1    using this method. The European 
and American estimated densities closely superimpose each other suggesting that 
our results are robust to the American option specification. In addition, the online 
Appendix provides the results of all the counterfactuals using the American option. 
These results are qualitatively identical and quantitatively close to the European 
option results.

B. Extension

Our methodology extends to a large class of auctions under multidimensional 
private information. It accommodates as special cases the scoring auctions used 
in construction procurements and oil lease sales among other examples. For sim-
ple exposition, we assume independent private information across bidders and omit 
auction covariates. Let   ( θ 1  ,  …,  θ K+1  )   be a  K + 1  vector of the bidder’s private infor-
mation distributed as  F ( ·,  …, · | n)  . Each bidder submits a  K + 1  vector of bid com-
ponents   ( b 1  ,  …,  b K+1  )  , where   b K+1    is a cash component. The bidder’s value for the 
auctioned object is  V ( b 1  ,  …,  b K  ;  θ 1  ,  …,  θ K+1  )  . The auctioned object is allocated to 
this bidder with probability  P ( b 1  ,  …,  b K+1   | n)  . Each bidder maximizes his expected 
profit   [V ( b 1  ,  …,  b K  ;  θ 1  ,  …,  θ K+1  )  −  b K+1  ] P ( b 1  ,  …,  b K+1   | n)  . The  first-order condi-
tions with respect to   ( b 1  ,  …,  b K+1  )   lead to a system of  K + 1  equations:

   V k   ( b 1  ,  …,  b K  ;  θ 1  ,  …,  θ K+1  )  = −   
 P k   ( b 1  ,  …,  b K+1   | n) 

  _______________  
 P K+1   ( b 1  ,  …,  b K+1   | n)   , k = 1,  …, K ;

  V ( b 1  ,  …,  b K  ;  θ 1  ,  …,  θ K+1  )  =  b K+1   +   
P ( b 1  ,  …,  b K+1   | n) 

  _______________  
 P K+1   ( b 1  ,  …,  b K+1   | n)   ; 

where the index  k  refers to the derivative with respect to   b k   . This extends the sys-
tem (3)–(4) under independent private information. Our identification argument of 
Section IIB applies. For example, in the case of scoring procurement auctions, bid-
ders bid a quality vector   ( b 1  ,  …,  b K  )   and a cash component   b K+1   . The bidder’s value 
is given by the total cost   θ K+1   +  θ 1    b 1   + … +  θ K    b K   , where   θ K+1    is interpreted as 
a fixed cost and   θ k    as the marginal cost of quality  k . The bidder’s expected profit 

27 Using 100 steps means that   2   100   possible price paths are considered over the  3-year duration of each option, 
and firms make a decision about whether to exercise the option every  3 × 365/100  = 10.95 days. We adapt code 
from Zagaglia’s (2012) option pricing package to compute the option value.
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is   [ b K+1   −  θ K+1   −  b 1    θ 1   − … −  θ K    b K  ] P ( b 1  ,  …,  b K+1   | n)  . Our method, allowing 
for general allocation rules, does not require a defined scoring rule, but accom-
modates them as a special case where bidder  i ’s winning probability is  Pr [ S i   ≥  

S j  , ∀ j ≠ i |   ( b 1  ,  …,  b K+1  )  i  ]  =  G  S  n−1  ( S i   | n)   with score   S i   = S [  ( b 1  ,  …,  b K+1  )  i  ]   and 

score distribution   G S   ( · )  . Up to sign, the  first-order conditions are as above. See 
Takahashi (2018); Hanazono et al. (2016); and Sant’Anna (2018) for recent contri-
butions on scoring auctions with endogenous qualities.28

VI. Conclusion

In this paper, we perform a structural analysis of bidding on contracts. Using 
oil lease data in Louisiana, our goal is to assess the impact of multi- versus 
 single-attribute auctions on government revenue, allocation, information rents, 
development rates and social surplus. By allowing bidders with multidimensional 
private information to choose the most favorable combination of their multidimen-
sional bid components, we account for adverse selection. Using option values, our 
model also accounts for moral hazard as firms can choose whether to execute the 
contract depending on their incentives. The latter in turn affects the bid components 
and vice versa. Our model and empirical methodology allow for a general contract 
value and allocation rule. We recover expected production volumes, costs and devel-
opment rates without ex post observations.

In the case of Louisiana, we find that (i)  cash-royalty bidding exacerbates adverse 
selection, (ii) a  fixed-royalty auction would improve government revenue without 
harming development rates or social surplus, and (iii) a  fixed-royalty auction would 
also dominate a scoring auction. These findings contrast with what we have learned 
about  multi-attribute auctions in the  price-quality auction literature, where scoring 
auctions dominate  one-dimensional  fixed-quality auctions. Lastly, auctioning of 
incentive contracts with multidimensional private information is an area where the 
design space is rich but auction design recommendations and empirical work are 
sparse. We hope that this paper helps trigger new developments in this area.
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