
Online Appendix

A.1 Proofs and theoretical discussions

Simulation of policy implications: synergy versus affiliation Table 2 shows

that when N = 2, the observed probability that the same bidder wins both tracts in a pair

is 74%. I use simulations with a simple model to explore some implications of failing to

distinguish synergy and affiliation across auctions when analyzing this data. Consider a

sequence of two second-price auctions, where bidders’ marginal value distributions in both

auctions are U [0, 1]. Suppose I assume winning both tracts results in total value v1 +v2 +α,

where α is a constant, but I disallow affiliation by assuming independence of values across

auctions. To rationalize a 74% probability of the same bidder winning both tracts, α must

be roughly 0.3, indicating a substantial amount of synergy. Simulations show that this

model would recommend sequential auctions over a bundled second-price auction for 5%

higher revenue.

Meanwhile, the observed statistic could also be rationalized by a model with affiliation

but no synergy. For instance, the marginal distributions of v1 and v2 could be related

by a Gaussian copula with dependence parameter of roughly 0.7. If this was the true

model, the former model would have grossly mismeasured synergy as an object of interest.

Moreover, the formerly recommended policy of sequential auctions would actually result in

a revenue loss relative to bundled auctions, of roughly 5%. The two explanations lead to

opposing policy recommendations regarding revenue. In fact, they also lead to opposing

recommendations regarding which option would improve efficiency, or generate the greatest

value for auction winners.

Deriving the first-order condition in section 3.2 A bidder will bid the b that

maximizes the expected profit π(v1, b). Taking the derivative of π(v1, b) with respect to b

and setting it equal to zero gives

0 = −GN−1(b) + (N − 1)GN−2(b)g(b)

v̄ˆ

v2=v

{
v1 − b

+

s(v1,v2)ˆ

u=v

(s(v1, v2)− u)dH1(u|b)−
v2ˆ

u=v

(v2 − u)dH2(u|b)
}
dF2(v2|v1).

(10)

Rearranging this gives
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G(b)
(N−1)g(b) =

´ v̄
v2=v{v1 − b+

´ s(v1,v2)
u=v (s(v1, v2)− u)dH1(u|b)

−
´ v2
u=v(v2 − u)dH2(u|b)}dF2(v2|v1).

Some algebra using integration by parts shows that

s(v1,v2)ˆ

u=v

(s(v1, v2)− u)dH1(u|b) =

s(v1,v2)ˆ

u=v

H1(u|b)du

v2ˆ

u=v

(v2 − u)dH2(u|b) =

v2ˆ

u=v

H2(u|b)du.

So the first-order condition can be simplified to

b = v1 +

v̄ˆ

v2=v

{
s(v1,v2)ˆ

u=v

H1(u|b)du−
v2ˆ

u=v

H2(u|b)du}dF2(v2|v1)− G(b)

(N − 1)g(b)
.

Proof of Proposition 1 First, I show that if v′1 > v1, b ∈ BR(v1) (best response

set), and b′ ∈ BR(v′1), then it must be that b′ ≥ b. Suppose not; suppose b′ < b. By

definition of best response, b ∈ BR(v1) means π(v1, b) − π(v1, b
′) ≥ 0 and b′ ∈ BR(v′1)

means 0 ≥ π(v′1, b)−π(v′1, b
′). Defining κ(v1) ≡ π(v1, b)−π(v1, b

′), this means κ(v1) ≥ κ(v′1).

Writing out κ(v1) gives the following expression:

´ v̄
v2=v{ v1[GN−1(b)−GN−1(b′)]− bGN−1(b) + b′GN−1(b′)

+
´ b
t=b′

´ s(v1,v2)
u=v (s(v1, v2)− u)dH1(u|t)dGN−1(t)

−
´ b
t=b′

´ v2
u=v(v2 − u)dH2(u|t)dGN−1(t) }dF2(v2|v1).

Then, after some algebra and integration by parts, κ(v1)− κ(v′1) is

(v1 − v′1)[GN−1(b)−GN−1(b′)] +
´ b
t=b′ [λ(v1, t)− λ(v′1, t)] dG

N−1(t)

−
´ b
t=b′ [µ(v1, t)− µ(v′1, t)] dG

N−1(t),

where λ(v1, t) ≡
´ ´ s(v1,v2)

u=v H1(u|t)du dF2(v2|v1) and µ(v1, t) ≡
´ ´ v2

u=vH2(u|t)du dF2(v2|v1).

First, since v′1 > v1, b′ < b, and GN−1(·) is a cdf, the first part of the expression above is

negative. Second, since H1 and H2 are non-negative, F2(v2|v1) is stochastically ordered in

v1, and s(v1, v2) is weakly increasing in it arguments, both λ(v1, t) and µ(v1, t) are weakly

increasing in v1. Hence the second part of the expression is negative and the third part is

positive. Now I focus on this positive third part. H2(u|t) < 1 for all u < v̄ because it is a

cdf. As a result, −[µ(v1, t)− µ(v′1, t)] is strictly bounded above by
´ ´ v2

u=v 1du dF2(v2|v′1)−
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´ ´ v2
u=v 1du dF2(v2|v1) =

´
v2dF2(v2|v′1)−

´
v2dF2(v2|v1) = E[v2|v′1]− E[v2|v1]. Hence,

κ(v1)− κ(v′1) < (v1 − v′1)[GN−1(b)−GN−1(b′)] +
´ b
t=b′{E[v2|v′1]− E[v2|v1]}dGN−1(t)

= [GN−1(b)−GN−1(b′)][(v1 − v′1) + E[v2|v′1]− E[v2|v1]]

≤ 0.

The last line comes from E[v2|v′1]−E[v2|v1] ≤ v′1−v1, which is given by AS4 and AS5. Then

according to the inequality above, κ(v1) − κ(v′1) < 0. However, this contradicts κ(v1) ≥
κ(v′1), which must be satisfied by definition of best response. Hence by contradiction, it

must be that b′ ≥ b. Note that AS5 is stronger than necessary to arrive at this result; there

is slack in the inequality above. In terms of the existing literature, the condition I have

shown above implies that IRT-SCC as defined in Reny and Zamir (2004) is satisfied. Then,

by their Theorem 2.1, the first auction possesses a monotone pure-strategy equilibrium. I

continue below to show that all symmetric equilibria for this auction must be monotone.

Next, I show that two different values cannot share the same best response b. Consider

πb(v1, b), the derivative of the expected profit function with respect to b. For any v′1 > v1,

πb(v
′
1, b)− πb(v1, b) is

πb(v
′
1, b)− πb(v1, b)

= {v′1 − v1 + λ(v′1, b)− λ(v1, b)− [µ(v′1, b)− µ(v1, b)]}(N − 1)GN−2(b)g(b)

> {v′1 − v1 + λ(v′1, b)− λ(v1, b)− [E[v2|v′1]− E[v2|v1]]}(N − 1)GN−2(b)g(b)

≥ 0.

Again, the second line comes from the fact that µ(v′1, b)−µ(v1, b) is strictly bounded above

by E[v2|v′1]−E[v2|v1], and the third line comes from E[v2|v′1]−E[v2|v1] ≤ v′1−v1, λ(v′1, b)−
λ(v1, b) ≥ 0, and (N − 1)GN−2(b)g(b) > 0. So πb(v1, b) is strictly increasing in v1. Hence,

for any given bid b and bid distribution G(·), there can only be one v1 that satisfies equation

(3); two different values cannot share the same best response b. This rules out b′ = b. We

already established that b′ ≥ b, so it must be that b′ > b.

Finally, I show that for each v1, there cannot be more than one b ∈ BR(v1). Suppose

not; suppose b′′ ∈ BR(v1) as well, and without loss of generality, b′′ > b. Given what we

already established, the probability of winning does not change whether the bidder bids b′′

or b; bidders with values lower than v1 will bid lower than all elements of BR(v1) and bidders

with higher values will bid higher than all elements of BR(v1). On the other hand, bidding

more still decreases the bidder’s payoff upon winning. As a result, π(v1, b
′′) < π(v1, b).

However, this contradicts the premise that b′′ ∈ BR(v1). Therefore, there cannot be more

than one b ∈ BR(v1). Hence we can define a bid function b(v1), which is strictly increasing.
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Checking the second-order condition In the proof of Proposition 1, I established

that the derivative πb(v1, b) is strictly increasing in v1. Let ξ(·) be the inverse bid function.

By monotonic bidding, if x < b(v1), then ξ(x) < v1. Then, since πb(v1, b) is strictly

increasing in v1, πb(v1, x) > πb(ξ(x), x) = 0. Likewise, if x > b(v1), then ξ(x) > v1 by

monotonic bidding, so πb(v1, x) < πb(ξ(x), x) = 0. In summary, πb(v1, x) > 0 if x < b(v1)

and πb(v1, x) < 0 if x > b(v1), so b(v1) does achieve the global maximum of π(v1, ·).

Proof of Proposition 2 First I derive (5). Replacing H1(u|b), H2(u|b), G(b), and

g(b) with H̃1(u|v1), H̃2(u|v1), F1(v1), and f1(v1)/b′(v1), respectively in (10) gives 0 =

−F1(v1)N−1 + (N − 1)F1(v1)N−2 f1(v1)
b′(v1) (T (v1) − b). Rearranging terms leads to

b′(v1)F1(v1)N−1+b(N−1)F1(v1)N−2f1(v1) = T (v1)(N−1)F1(v1)N−2f1(v1), which is exactly

(5). With the boundary condition P (v) ≡ b(v)F1(v)N−1 = 0, the solution to that differential

equation is P (v1) =
´ v1
v T (x)dF1(x)N−1. Now, since P (v1) ≡ b(v1)F1(v1)N−1, this means

b(v1)F1(v1)N−1 =
´ v1
v T (x)dF1(x)N−1. Hence b(v1) =

´ v1
v T (x)dF1(x)N−1/F1(v1)N−1. This

is a bid function that must be satisfied in any symmetric equilibrium; therefore the equilib-

rium given by this bid function is the only symmetric Bayes-Nash equilibrium.

Proof of Proposition 3 Step (i): For a fixed set of first auction bids {bi}, values in the

second auction are drawn from D̃(·|bw1) for the A1-winner w1, and from F̃2(·|bi) each loser

i 6= w1. These draws are independent across bidders. Furthermore, by assumption AS3,

all value distributions involved are continuous and have the same support. Hence, we can

apply Theorem 2 of Athey and Haile (2002), which establishes identification of asymmetric

value distributions from transaction prices and bidder identities. Theorem 3 of Athey and

Haile (2002) extends this to auctions with auction-specific covariates.

Step (ii): By assumption AS6, s̃(b, v2) is weakly increasing in v2. So if we define

v2(α|b) ≡ F̃−1
2 (α|b), i.e. the α-quantile of v2 conditional on b, then s̃(b, v2(α|b)) must be the

α-quantile of s conditional on b, D̃−1(α|b). That is, for any quantile α, s̃(b, F̃ 2,−1(α|b)) =

D̃−1(α|b). Since b is observed and F̃2(·|b) and D̃(·|b) are identified from step (i), we know

the function s̃(·, ·).
Step (iii): Consider (4), the inverse bid function. From steps (i) and (ii), every com-

ponent of the right-hand side is either observed or identified from data, so ξ(b) can be

computed. Since bids are monotonic in v1, the α-quantile of v1, v1(α), corresponds to

ξ(b(α)). Now, since the distribution of b is observed and ξ(b) can be computed for any

b, we can compute v1(α) for any quantile α. Hence, the distribution of v1 is identified

nonparametrically.

Step (iv) is explained fully in the text.
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Role of AS3 in identification Revisiting step (i), one assumption that goes into

Athey and Haile (2002)’s result is that all value distributions have the same support. I list

this assumption in AS3 to provide for full identification. What are the consequences if this

assumption does not hold? Suppose D(·|·) has a larger support than F2(·|·) with a greater

supremum v̄D > v̄F2 . Since English auction prices only reveal the second highest value, we

never observe prices above v̄F2 , meaning we gather no information on the shape of D(·|·)
in the interval (v̄F2 , v̄D). So D(·|·) will be identified on [v, v̄F2 ], where the two supports

overlap, but not on (v̄F2 , v̄D). Meilijson (1981), on which Theorem 2(a) of Athey and Haile

(2002) is based, discusses identification on non-identical supports in section 6.

Proof of Remark 1 Consider the N = 2 case as an example. The distribution of

the second highest value out of {s(v1, v2), v2}, J(·|z′β), can be rewritten {F−1
2 (αs|z′β),

F−1
2 (α2|z′β)}, where the -1 superscript indicates the inverse function. Now for any v,

define α ≡ F2(v|z′β) and α̃ ≡ J(v|z′β). Then α̃ ≡ J(v|z′β) = J(F−1
2 (α|z′β)|z′β)=

Pr({F−1
2 (αs|z′β), F−1

2 (α2|z′β)}(2) ≤ F−1
2 (α|z′β)|z′β) = Pr({αs, α2}(2) ≤ α|z′β).28 From

AS8, the distributions of αs, α2 are invariant to z′β, so we can simplify α̃ = Pr({αs, α2}(2) ≤
α|z′β) to Pr({αs, α2}(2) ≤ α). Hence α̃ is a function only of α, invariant to z. Furthermore,

since C(α1, α2) is invariant to z according to AS8, and α̃ is a function only of α, C(α1, α̃2)

is also invariant to z. The same applies for C(α1, α̃s).

Bid homogenization Haile et al. (2003)’s method can be used for bid homogeniza-

tion if their assumptions of additive separability and independence are extended to a joint

distribution of values and a synergy function. A proof follows.

The assumptions needed are (1) Additively separable structure on values: v1 = Γ(z)+ε1;

v2 = Γ(z) + ε2; s(v1, v2) = s(Γ(z) + ε1,Γ(z) + ε2) = Γ(z) + š(ε1, ε2); and (2) Independence

of joint distribution of ε from z: F̌ (ε1, ε2; z) = F̌ (ε1, ε2).

Note that as a direct consequence of these assumptions, F̌1(ε1), F̌2(ε2|ε1), and

Ď(s(ε1, ε2)|ε1) are all independent of z. For simplicity assume there exists a z0 such that

Γ(z0) = 0. Given these assumptions, I show that the expected benefit in A2 of winning A1

- the bracketed part of T (v1) - is a function of ε1. From this, the additive separability of

the bid function follows easily. First, I perform some necessary change-of-variables algebra.

Notation-wise, I use η1 to stand in for a generic draw from F̌1(·).
H̃1(u|v1; z) = H̃1(Γ(z) + εu|Γ(z) + ε1; z)

≡ F2(Γ(z) + εu|η1 ≤ ε1; z)N−2F2(Γ(z) + εu|η1 = ε1; z)

= F̌2(εu|η1 ≤ ε1)N−2F̌2(εu|η1 = ε1)

≡ Ȟ1(εu|ε1).

28The {}(2) subscript indicates the second order statistic out of the values in {}.
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H̃2(u|v1; z) = H̃2(Γ(z) + εu|Γ(z) + ε1; z)

≡ F2(Γ(z) + εu|η1 ≤ ε1; z)N−2D(Γ(z) + εu|η1 = ε1; z)

= F̌2(εu|η1 ≤ ε1)N−2Ď(εu|η1 = ε1)

≡ Ȟ2(εu|ε1).

For both H̃1(u|v1; z) and H̃2(u|v1; z) above, the first line comes from applying additive

separability, the second line comes from the definition of H̃(·|·), and the third line comes

from applying independence from z. Then as a result we have
´ s(v1,v2)
v H̃1(u|v1; z)du =´ Γ(z)+š(ε1,ε2)

Γ(z)+ε2
H̃1(u|v1; z)du =

´ š(ε1,ε2)
ε2

Ȟ1(εu|ε1)dεu. Similarly,
´ v2
v H̃2(u|v1; z)du =

´ Γ(z)+ε2
Γ(z)+ε2

H̃2(u|v1; z)du =
´ ε2
ε2
Ȟ2(εu|ε1)dεu.

Then, ´ v̄
v2=v

{ ´ s(v1,v2)
u=v H̃1(u|v1; z)du−

´ v2
u=v H̃2(u|v1; z)du

}
dF2(v2|v1; z)

=
´ ε̄2
ε2=ε2

{ ´ š(ε1,ε2)
ε2

Ȟ1(εu|ε1)dεu −
´ ε2
ε2
Ȟ2(εu|ε1)dεu

}
dF̌2(ε2|ε1).

≡ EB(ε1).

The second line above is a function of ε1, just as the first line is a function of v1. Let’s call

this function EB(·).
Now, T (v1) as defined in section 3.3 can be rewritten T (v1) = v1 + EB(ε1) = Γ(z) +

ε1 + EB(ε1). Define ε1(x; z) ≡ x − Γ(z). Then, by Proposition 2, the bid b(v1; z) =´ v1
v T (x)dF1(x)N−1/F1(v1)N−1=

´ v1
v {Γ(z)+ε1(x; z)+EB(ε1(x; z))}dF1(x)N−1/F1(v1)N−1=

Γ(z)
´ v1
v dF1(x)N−1/F1(v1)N−1+

´ v1
v {ε1(x; z) + EB(ε1(x; z))}dF1(x; z)N−1/F1(v1; z)N−1 =

Γ(z) +
´ ε1
y=ε1
{y + EB(y)}dF̌1(y)N−1/F̌1(ε1)N−1= Γ(z) + b(ε1; z0).

So the bid function has the additively separable form b(v1; z) = Γ(z) + b(ε1; z0) as in

Haile et al. (2003).

A.2 Model extensions

A.2.1 Asymmetric bidders

I extend the model of sequential auctions to bidders having asymmetric value distributions

and synergy functions. For simplicity, I illustrate the case of two asymmetric subgroups

with at least two bidders per group, but this is not essential. The asymmetric model requires

additional notation. First, a superscript or subscript m will indicate the subgroup to which

value distributions and synergy functions belong, so v1 ∼ Fm1 (·), v2 ∼ Fm2 (·|v1), sm(v1, v2),

and Dm(x|v1) ≡ prob(sm(v1, v2) ≤ x|v1). I assume the support of these distributions is the

same across groups. Then the distribution of the highest competing bid in A2 conditional on

the highest competing bid in A1 being t can be expressed as one of the following, depending

on whether the bidder wins A1 and depending on the subgroup of his highest competitor.

Namely,

6



Hm,m
1 (u|t) = Fm2 (u|bm ≤ t)Nm−2F−m2 (u|b−m ≤ t)N−mFm2 (u|bm = t)

Hm,−m
1 (u|t) = Fm2 (u|bm ≤ t)Nm−1F−m2 (u|b−m ≤ t)N−m−1F−m2 (u|b−m = t)

Hm,m
2 (u|t) = Fm2 (u|bm ≤ t)Nm−2F−m2 (u|b−m ≤ t)N−mDm(u|bm = t)

Hm,−m
2 (u|t) = Fm2 (u|bm ≤ t)Nm−1F−m2 (u|b−m ≤ t)N−m−1D−m(u|b−m = t).

Subscript 1 on H(·|·) applies if the bidder wins A1, and subscript 2 applies if the bidder loses

A1. The first superscript on H(·|·) indicates the subgroup of the bidder being analyzed,

and the second superscript indicates the subgroup of his highest competing bidder in A1.

Now, for a bidder from subgroup m, the probability that the highest competing bid in

A1 is less than or equal to t is Gm(t)Nm−1G−m(t)N−m , where Gm(·) is the distribution of

A1 bids from subgroup m. Then, for a bidder from subgroup m, the probability (density)

that the highest competing bid in A1 is equal to t is ∂[Gm(t)Nm−1G−m(t)N−m ]/∂t and can

be expressed as jm(t) + km(t), where jm(t) ≡ (Nm − 1)Gm(t)Nm−2gm(t)G−m(t)N−m is the

probability that the highest competing bid in A1 is equal to t and from subgroup m, and

km(t) ≡ N−mG−m(t)N−m−1g−m(t)Gm(t)Nm−1 is the probability that the highest competing

bid in A1 is equal to t and from subgroup −m. Using this notation, the expected profit at

the time of A1 for a bidder from subgroup m is

πm(v1, b) =

v̄ˆ

v2=v

Xm(v1, v2, b)dF
m
2 (v2|v1),

where

Xm(v1, v2, b) ≡
´ b
t=b[v1 − b+

´ sm(v1,v2)
u=v (sm(v1, v2)− u)dHm,m

1 (u|t)]jm(t)dt

+
´ b
t=b[v1 − b+

´ sm(v1,v2)
u=v (sm(v1, v2)− u)dHm,−m

1 (u|t)]km(t)dt

+
´ b̄
t=b

´ v2
u=v(v2 − u)dHm,m

2 (u|t)jm(t)dt

+
´ b̄
t=b

´ v2
u=v(v2 − u)dHm,−m

2 (u|t)km(t)dt.

In the equation defining Xm(·, ·, ·), the first two parts account for the probability that the

bidder wins A1 and the last two parts account for the probability that he loses A1. There

are two parts to each case because with asymmetry, the identity (subgroup) of the highest

competing bidder in A1 matters for the bidder’s expected profit in A2.

Taking a derivative of the expected profit function πm(v1, b) with respect to b yields the

first-order condition for bidding for subgroup m. After simplifying and rearranging, the

first-order condition for subgroup m can be rewritten as
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Gm(b)Nm−1G−m(b)N−m

= (v1 − b)(jm(b) + km(b))

+
´ v̄
v2=v{jm(b)[

´ sm(v1,v2)
u=v Hm,m

1 (u|b)du−
´ v2
u=vH

m,m
2 (u|b)du]

+ km(b)[
´ sm(v1,v2)
u=v Hm,−m

1 (u|b)du−
´ v2
u=vH

m,−m
2 (u|b)du]}dFm2 (v2|v1).

(11)

This is structurally similar to the FOC for symmetric bidders in (3), but breaks down

terms to account for differences between subgroups. The logic of Proposition 1 still applies

in the asymmetric case, so bidding in A1 is monotonic in v1 within each subgroup and the

single crossing condition29 is satisfied. By Reny and Zamir (2004), there exists a monotone

pure-strategy equilibrium.

Provided that a single equilibrium is being played, the primitives of the asymmetric

model, Fm1 (·), Fm2 (·|·), and sm(·, ·), are identified from the observables, which are all the

bids in A1 and the transaction price in A2, along with bidder identities.

To see this, split the data conceptually into two subsamples, one where the first-auction

winner is from subgroup m, and the other where the first-auction winner is from subgroup

−m. Take the first subsample. In the first subsample, bidders in A2 are either the A1-

winner from subgroup m, an A1-loser from subgroup m, or an A1- loser from subgroup −m.

Following Proposition 3(i), the value distributions from which each of these bidders draws

their A2 values conditional on their observed A1 bids - D̃m(·|b) and F̃−m2 (·|b) at least30 -

are identified. Similarly, D̃−m(·|b) and F̃m2 (·|b) are additionally identified from the second

subsample. Then, following Proposition 3(ii), the synergy function s̃m(b, ·) is identified from

the difference between D̃m(·|b) and F̃m2 (·|b), and s̃−m(b, ·) is identified from D̃−m(·|b) and

F̃−m2 (·|b). This compares an A1-winner and A1-loser conditional on the same subgroup and

same first-auction bid. Finally, Fm1 (v1) and F−m1 (v1) are identified using each subgroup’s

first-order condition (11) for bidding in A1; that is, if we replace sm(v1, v2) with s̃m(b, v2)

and Fm2 (v2|v1) with F̃m2 (v2|b), every component of (11) other than v1 is either observed or

identified. Therefore, we can recover any quantile of v1 by computing this equation at the

same quantile of bm. Once Fm1 (v1) and F−m1 (v1) are identified, we can convert s̃m(b, v2)

and F̃m2 (v2|b) back to sm(v1, v2) and Fm2 (v2|v1) by replacing the α-quantile of bm with the

α-quantile of v1. This completes identification with asymmetric bidders.

29Specifically, the IRT-SCC as defined by Reny and Zamir (2004).
30I say “at least” because this is what is identified in the minimal case of one bidder per subgroup.

In that scenario, the first subsample contains exactly one subgroup m winner and one subgroup −m
loser, and vice versa for the second subsample.
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A.2.2 Sequence of two second-price auctions

Consider a sequence of two second-price auctions. Bidding in the second auction does not

change from section 3.2. The first auction does change. Retaining the same notation as

before, the expected profit from the two auctions at the time of the first auction, where the

bidder bids b is

π(v1, b) =

v̄ˆ

v2=v

{ bˆ

t=b

(
v1 − t+

s(v1,v2)ˆ

u=v

(s(v1, v2)− u)dH1(u|t)
)
dGN−1(t)

+

b̄ˆ

t=b

v2ˆ

u=v

(v2 − u)dH2(u|t)dGN−1(t)

}
dF2(v2|v1).

Setting ∂π(v1, b)/∂b = 0 yields the following first-order condition for bidding in the first

auction. It says bidders in the first auction bid v1 plus the expected benefit in the second

auction of winning the first auction (contrast to (3)). Namely,

b = v1 +

v̄ˆ

v2=v

{ s(v1,v2)ˆ

u=v

H1(u|b)du−
v2ˆ

u=v

H2(u|b)du
}
dF2(v2|v1).

︸ ︷︷ ︸
expected benefit in A2 of winning A1

The inverse bid function (contrast to (4)) is

ξ(b) ≡ b−
v̄ˆ

v2=v

{ s̃(b,v2)ˆ

u=v

H1(u|b)du−
v2ˆ

u=v

H2(u|b)du
}
dF̃2(v2|b) = v1.

For identification, the key data requirement is that all bids in the first auction be

observed. Turning to the identification strategy in section 4.1, steps (i), (ii), and (iv) carry

through. Only step (iii) changes; one would use the simpler inverse bid function above

rather than (4) to identify the quantiles of v1. Then all the primitives of the model are

identified as before.

A.2.3 Sequence of two first-price auctions

Auction theory shows that when the second auction is a first-price auction, characterizing

equilibria is even more challenging than for other sequences due to the “ratchet effect”:

information about private values revealed by first-auction bids affects rivals’ strategies in

the second auction, so bidders have an incentive to deceive their rivals, leading to pooling
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equilibria. Due to the difficulties, the theory literature often focuses on stylized models to

garner insights, e.g. models with binary valuations. As strict monotonicity of bids is key to

point identification in all structural auction analysis, it is natural that this paper’s methods

cannot be applied to pooling equilibria.

On the other hand, if information disclosure between auctions is limited (see Bergemann

and Horner (2014) for a list of empirical examples), equilibrium can still consist of pure and

monotone strategies in both auctions; Février (2003) demonstrates this for an auction in

which the seller reveals the name of the first-auction winner but does not reveal first-auction

bids. If bidding strategies are strictly monotonic, this paper’s method applies: synergy is

identified nonparametrically and distinguished from affiliation across auctions.

To illustrate, consider a sequence of first-price auctions with N = 2 ex-ante symmetric

bidders, where only the name of the A1-winner is revealed to bidders between auctions,

and all bid functions are strictly monotonic in values. The econometrician observes all

bids in both auctions. Let b1W and b1L indicate the first-auction bids of the first-auction

winner and loser, respectively. The A1-winner’s synergy-inclusive value for the second

item has distribution D(·|b1W ), and his corresponding monotonic second-auction bids have

distribution G2W (·|b1W ). Similarly, the A1-loser has distribution of values for second item

F2(·|b1L) and corresponding bid distribution G2L(·|b1L).

Now consider the A1-winner’s bidding decision in A2. He does not know the losing

first-auction bid - I emphasize this with upper case B1L - knowing only that it was less

than his own bid. His expected profit from bidding b2 is πW (s(v1, v2), b2|b1W ) ≡ (s(v1, v2)−
b2)G2L(b2|B1L < b1W ). This leads to the winner’s first-order condition that s(v1, v2) =

b2 + G2L(b2|B1L < b1W )/g2L(b2|B1L < b1W ). Meanwhile, the A1-loser does not know the

winning first-auction bid, knowing only that it was greater than his own bid. His expected

profit from bidding b2 is πL(v2, b2|b1L) ≡ (v2 − b2)G2W (b2|B1W > b1L). This leads to the

loser’s first-order condition that v2 = b2 +G2W (b2|B1W > b1L)/g2W (b2|B1W > b1L).

As the econometrician observes all bids, the distributions G2W (·|b1W ), G2L(·|b1L),

G2W (·|B1W > b1L), and G2L(·|B1L < b1W ) are estimated directly from the data. Then,

following the logic of Guerre et al. (2000), D(·|b1W ) and F2(·|b1L) are identified. Once this

is done, the synergy function s(·, ·) is identified nonparametrically by comparing D(·|b1W )

and F2(·|b1L) conditional on b1W = b1L as explained in section 4.1.

A.3 Proof of consistency of estimators for F2(·|·), D(·|·), s(·, ·),
and F1(·)
Proposition 4. The estimators for F2(·|·), D(·|·), s(·, ·), and F1(·) are consistent given the

following conditions.
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(C1) AS1-AS3, AS5, AS6 as presented in section 3.1.

(C2) AS4′: Either F2(x|v1) = F2(x) ∀x, v1 (independence) or F2(x|v′1) < F2(x|v1) if v′1 > v1

∀x (strict stochastic ordering).

(C3) The estimated distribution of observed A1 bids, Ĝ(·), is consistent, continuous, and

has strictly positive density on the whole support.

(C4) Observations are i.i.d., where one observation refers to one pair (or sequence) of

auctions A1-A2.

Recall that for the sieve maximum likelihood estimation step, bid data are normalized to

have support [0,1], and F2(·|·), D(·|·), and F1(·) have range [0,1] as cdfs. I use the following

notation in the proof. The parameter θ is an infinite-dimensional parameter representing

nonparametric F2(·|·) and D(·|·). As the identity function is a continuous function, F2(·|·)
and D(·|·) are continuous in θ. The function d(·, ·) is a metric on parameter space Θ.

Specifically, I use the uniform norm here. The function Q(θ) ≡ E[log(L(θ))], where L(·),
the likelihood of an A2 price and winner given θ, is defined in section 5.1. The function

Q̂n(θ) ≡ 1
n

n∑
i=1

log(Li(θ)) where n is the number of observations.

Proof of consistency of the sieve maximum likelihood estimators for F̃2(·|·)
and D̃(·|·) I establish this by checking the conditions of Corollary 2.6 of White and

Wooldridge (1991) as presented by Chen (2007).

CONDITION 3.1′ (Identification).

(i) Q(θ) is continuous at θ0 in Θ, Q(θ0) > −∞;

(ii) for all ε > 0, Q(θ0) > sup{θ∈Θ:d(θ,θ0)≥ε}Q(θ).

CONDITION 3.2′ (Sieve spaces).

(i) Θk ⊆ Θk+1 ⊆ Θ for all k ≥ 1;

(ii) for any θ ∈ Θ there exists πkθ ∈ Θk such that d(θ, πkθ)→ 0 as k →∞.

CONDITION 3.3′ (Continuity). For each k ≥ 1,

(i) Q̂n(θ) is a measurable function of the data {Zt}nt=1 for all θ ∈ Θk;

(ii) for any data {Zt}nt=1, Q̂n(θ) is upper semicontinuous on Θk under the metric d(·, ·).
CONDITION 3.4 (Compact sieve space). The sieve spaces, Θk, are compact under d(·, ·).
CONDITION 3.5(i) (Uniform convergence over sieves). For all k ≥ 1, plimn→∞ supθ∈Θk

|Q̂n(θ)−
Q(θ)| = 0.

By (C1), continuity of F2(·|·) and D(·|·) in θ, and the definition of likelihood L(·), the

following are true: (a) log(L(θ)) is continuous in θ and (b) E[supθ | log(L(θ))|] < ∞. Let

Θ′ be a compact subset of Θ containing θ0. Then Condition 3.1′(i) is satisfied, since Q(θ)

is continuous over Θ′ by Lemma 2.4 of Newey and McFadden (1994). Condition 3.1′(ii)

is established by the nonparametric identification proof of Proposition 3 and the fact that
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for maximum likelihood, identification is a sufficient condition for a unique maximum; see

Lemma 2.2 of Newey and McFadden (1994). Condition 3.2′(i) is satisfied by the definition

of Bernstein polynomials shown in (8). Condition 3.2′(ii) is established by (C1) (specifically

continuity in AS3) and the Stone–Weierstrass theorem (in fact, Bernstein polynomials are

the polynomials constructed to prove the Weierstrass Approximation Theorem). Condition

3.3′ is satisfied immediately by (C1), continuity of F2(·|·) andD(·|·) in θ, and the definition of

likelihood L(·). Condition 3.4 is satisfied as follows. By properties of Bernstein polynomials

(see Lorentz (1986)), the parameters ~γ ≡ [γ0, γ1, ..., γk] of the Bernstein polynomial of order

k that approximates function F (·) satisfy γi = F ( ik ). Since F (·) here is a cdf, F ( ik ) ∈ [0, 1]

and hence ~γ ∈ [0, 1]k+1. Let Y be the space of Bernstein polynomials of order k, and define

a mapping m : Rk+1 → Y that maps a vector of parameters ~γ to the polynomial bearing

those parameters. Then map m is a continuous map between topological spaces, which has

the property of preserving compactness. Now, since [0, 1]k+1, being closed and bounded,

is compact in Rk+1, m([0, 1]k+1) is compact in Y . Finally, defining Θk ≡ m([0, 1]k+1), the

sieve space Θk is compact in Y . Condition 3.5(i) is satisfied for any given k according

to the uniform law of large numbers in Lemma 2.4 of Newey and McFadden (1994), since

(a) log(L(θ)) is continuous in θ, (b) E[supθ | log(L(θ))|] < ∞ , and (c) Θk is compact.

Since conditions 3.1′-3.5(i) are satisfied, d(θ̂n, θ0) = oP (1) by Corollary 2.6 of White and

Wooldridge (1991). Finally, by continuity of F2(·|·) and D(·|·) in θ and the continous

mapping theorem, the estimators for F̃2(·|·) and D̃(·|·) are consistent.

During the remainder of the proof of consistency, I will make use of the following remark.

Remark 2. (Consistency of inverse). If F̂n(·) p→ F (·) and F (·), {F̂n(·)}n=1,...,∞, F−1(·)
and {F̂−1

n (·)}n=1,...,∞ exist, are well defined, are continuous in their arguments, and have

compact support, then F̂−1
n (·) p→ F−1(·).

Proof. Defining ηn(v) ≡ F̂n(v) − F (v), F̂n(·) p→ F (·) means lim
n→∞

Pr(‖ ηn(·) ‖∞> ε) =

0 for any arbitrary ε. Meanwhile, since F̂−1
n (·) is continuous, there exists an ε(v) > 0

such that if ηn(v) < ε(v), |F̂−1
n (F (v)) − F̂−1

n (F (v) + ηn(v))| < δ for arbitrary δ > 0. By

definition of ηn(v), F̂−1
n (F (v) + ηn(v)) = F̂−1

n (F̂n(v)) = v = F−1(F (v)). So there exists

an ε(v) > 0 such that if ηn(v) < ε(v), |F̂−1
n (F (v)) − F−1(F (v))| < δ for arbitrary δ > 0.

By the extreme value theorem, inf
v
ε(v) > 0. Define ε ≡ inf

v
ε(v). Now, if ‖ ηn(·) ‖∞< ε,

‖ F̂−1
n (·) − F−1(·) ‖∞< δ. Given that lim

n→∞
Pr(‖ ηn(·) ‖∞> ε) = 0 for any arbitrary ε, we

have that lim
n→∞

Pr(‖ F̂−1
n (·)− F−1(·) ‖∞> δ) = 0 for any arbitrary δ.

Proof of consistency of the estimator for s̃(·, ·) Recall s̃(b, v2) = D̃−1(F̃2(v2|b)|b)
and ˆ̃sn(b, v2) = ˆ̃D−1

n ( ˆ̃F2n(v2|b)|b). By AS3, the inverse D̃−1(·|·) exists, is well defined, and

is continuous in its arguments. Moreover, it has compact domain and range. Therefore, by
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Remark 2 and consistency of ˆ̃Dn(·|·), ˆ̃D−1
n (·|·) p→ D̃−1(·|·). Consequently, ˆ̃D−1

n ( ˆ̃F2n(·|·)|·) p→
D̃−1( ˆ̃F2(·|·)|·). Meanwhile, D̃−1( ˆ̃F2n(·|·)|·) p→ D̃−1(F̃2(·|·)|·) by the continuous mapping

theorem,. Therefore, ˆ̃sn(b, v2)
p→ s̃(b, v2).

Proof of consistency of the estimators for H1(·|·) and H2(·|·) Since H1(u|t)
and H2(u|t) are products of F̃2(u|t), D̃(u|t), and F̃2(u|b ≤ t), by the continuous mapping

theorem they are consistently estimated if each component is consistently estimated. Having

already established the consistency of estimators for F̃2(·|·) and D̃(·|·), I show below that

the estimator for F̃2(u|b ≤ t) is consistent. Since F̃2(u|b ≤ t) = F̃2(u) if v1 ⊥ v2, I focus on

the case in which v2 is strictly stochastically ordered in v1 (see (C2) above).

Proof of consistency of the estimator for F̃2(u|b ≤ t) Recall F̃2(u|b ≤ t) ≡´ t
b=b F̃2(u|b)dG(b)/G(t). I show that

´ t
b=b

ˆ̃F2n(u|b)dĜ(b)/Ĝ(t)
p→
´ t
b=b F̃2(u|b)dG(b)/G(t).

Note that since F̃2(u|b) is strictly decreasing in b by (C2), Pr[F̃2(u|b) ≤ x] = Pr[b ≤
F̃−1,b

2 (x|u)] = G(F̃−1,b
2 (x|u)), where F̃−1,b

2 (·|u) is the inverse of F̃2(u|·) and consistently esti-

mated according to Remark 2. Then by the mathematical property that E[z] ≡
´
zdFZ(z) =´

(1 − FZ(z))dz for z ≥ 0,
´ t
b=b F̃2(u|b)dG(b) =

´ F̃2(u|t)
F̃2(u|b) (1 − G(F̃−1,b

2 (x|u)))dx. If ‖ Ĝ(·) −

G(·) ‖∞< ε, |
´ F̃2(u|t)
F̃2(u|b) (1−Ĝ( ˆ̃F−1,b

2n (x|u)))dx−
´ F̃2(u|t)
F̃2(u|b) (1−G( ˆ̃F−1,b

2n (x|u)))dx| <
´ F̃2(u|t)
F̃2(u|b) εdx =

ε[ ˆ̃F2n(u|t) − ˆ̃F2n(u|b)] ≤ ε for all u, t. This means
´ F̃2(u|t)
F̃2(u|b) (1 − Ĝ( ˆ̃F−1,b

2n (x|u)))dx is contin-

uous in Ĝ(·) under the uniform norm. It is also continuous in ˆ̃F−1,b
2n (·|·) and ˆ̃F2n(·|·).

Then by the continuous mapping theorem,
´ ˆ̃F2n(u|t)

ˆ̃F2n(u|b)
(1 − Ĝ( ˆ̃F−1,b

2n (x|u)))dx
p→
´ F̃2(u|t)
F̃2(u|b) (1 −

G(F̃−1,b
2 (x|u)))dx. Therefore,

´ t
b=b

ˆ̃F2(u|b)dĜ(b)
p→
´ t
b=b F̃2(u|b)dG(b). I conclude that ˆ̃F2n(u|b ≤

t)
p→ F̃2(u|b ≤ t).

Proof of consistency of the estimator for ξ(b) Define ψ1(b, v2) ≡
´ s̃(b,v2)
u=v H1(u|b)du

and ψ2(b, v2) ≡
´ v2
u=vH2(u|b)du. ψ1(·, ·) and ψ2(·, ·) are continuous in s̃(·, ·) and H1(·|·) or

H2(·|·) under the uniform norm and have compact domain and range. By the continuous

mapping theorem, ψ̂1n(·|·) p→ ψ1(·|·) and ψ̂2n(·|·) p→ ψ2(·|·).
Now define ψ3(b) ≡

´ v̄
v2=v ψ1(b, v2)dF̃2(v2|b). I proceed to show that ψ3(b) is consis-

tently estimated. If ∂s̃(b,v2)
∂v2

= 0, ψ3(b) = ψ1(b), which has already been shown to be

consistently estimated. So I focus on the case in which ∂s̃(b,v2)
∂v2

> 0, and show that

ψ̂3n(b) ≡
´ v̄
v2=v ψ̂1n(b, v2)d ˆ̃F2n(v2|b)

p→
´ v̄
v2=v ψ1(b, v2)dF̃2(v2|b). I make use of the math-

ematical property that E[z] ≡
´
zdFZ(z) =

´
(1 − FZ(z))dz for z ≥ 0. Given ∂s̃(b,v2)

∂v2
> 0,

ψ1(b, v2) is strictly increasing in v2, so the inverse with respect to v2 given b, ψ−1,v2
1 (·|b),

exists and is well defined. Moreover by the properties of ψ1(·, ·), ψ−1,v2
1 (·|·) is contin-

uous in its arguments, has compact support, and is therefore consistently estimated by
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Remark 2. Now, Pr[ψ1(b, v2) ≤ x] = Pr[v2 ≤ ψ−1,v2
1 (x|b)] = F̃2(ψ−1,v2

1 (x|b)|b). Then´ v̄
v2=v ψ1(b, v2)dF̃2(v2|b) =

´ ψ1(b,v̄)
x=ψ1(b,v)[1 − F̃2(ψ−1,v2

1 (x|b)|b)]dx. Since this last expression

is continuous in ψ−1,v2
1 (·|·), ψ1(·, ·), and F̃2(·|·) under the uniform norm,

´ ψ̂1n(b,v̄)

x=ψ̂1n(b,v)
[1 −

ˆ̃F2n(ψ̂−1,v2
1n (x|b)|b)]dx p→

´ ψ1(b,v̄)
x=ψ1(b,v)[1−F̃2(ψ−1,v2

1 (x|b)|b)]dx by the continuous mapping theo-

rem. This is equivalent to
´ v̄
v2=v ψ̂1n(b, v2)d ˆ̃F2n(v2|b)

p→
´ v̄
v2=v ψ1(b, v2)dF̃2(v2|b), i.e. ψ̂3n(b)

p→
ψ3(b).

Following analogous logic, define ψ4(b) ≡
´ v̄
v2=v ψ2(b, v2)dF̃2(v2|b). I proceed to show

that ψ4(b) is consistently estimated. ψ2(b, v2) is strictly increasing in v2, so the inverse with

respect to v2 given b, ψ−1,v2
2 (·|b), exists and is well defined. Moreover by the properties

of ψ2(·, ·), ψ−1,v2
2 (·|·) is continuous in its arguments, has compact support, and is therefore

consistently estimated by Remark 2. Now, Pr[ψ2(b, v2) ≤ x] = Pr[v2 ≤ ψ−1,v2
2 (x|b)] =

F̃2(ψ−1,v2
2 (x|b)|b). Then

´ v̄
v2=v ψ2(b, v2)dF̃2(v2|b) =

´ ψ2(b,v̄)
x=ψ2(b,v)[1− F̃2(ψ−1,v2

2 (x|b)|b)]dx. Since

this last expression is continuous in ψ−1,v2
2 (·|·), ψ2(·, ·), and F̃2(·|·) under the uniform norm,´ ψ̂2n(b,v̄)

x=ψ̂2n(b,v)
[1− ˆ̃F2n(ψ̂−1,v2

2n (x|b)|b)]dx p→
´ ψ2(b,v̄)
x=ψ2(b,v)[1− F̃2(ψ−1,v2

2 (x|b)|b)]dx by the continuous

mapping theorem. This is equivalent to
´ v̄
v2=v ψ̂2n(b, v2)d ˆ̃F2n(v2|b)

p→
´ v̄
v2=v ψ2(b, v2)dF̃2(v2|b),

i.e. ψ̂4n(b)
p→ ψ4(b).

Finally, ξ̂(b) ≡ b + Ĝ(b)
(N−1)ĝ(b) − ψ̂3n(b) + ψ̂4n(b). By the continous mapping theorem,

ξ̂(·) p→ ξ(·).
This inverse bid function ξ(·) is strictly increasing and continuous in its argument with

compact domain and range. Hence the bid function ξ−1(·) exists, is continuous in its

argument and has compact domain and range. By Remark 2, the estimator for ξ−1(·) is

also consistent.

Proof of consistency of the estimators for F1(·) and F2(·|·), D(·|·), s(·, ·)
Recall F1(v1) = G(ξ−1(v1)). As both G(·) and ξ−1(·) are consistently estimated, F̂1(·) =

Ĝ(ξ̂−1
n (·)) p→ G(ξ̂−1

n (·)) and G(ξ̂−1
n (·)) p→ G(ξ−1(·)) by the continuous mapping theorem.

Hence F̂1(·) p→ F1(·).
Recall F2(v2|v1) = F̃2(v2|ξ−1(v1)). As both F̃2(·|·) and ξ−1(·) are consistently estimated,

F̂2(·|·) = ˆ̃F2n(·|ξ̂−1
n (·)) p→ F̃2(·|ξ̂−1

n (·)) and F̃2(·|ξ̂−1
n (·)) p→ F̃2(·|ξ−1(·)) by the continuous

mapping theorem. Hence F̂2(·|·) p→ F2(·|·). The argument for consistency of D(·|·) is

exactly analogous.

Recall s(v1, v2) = s̃(ξ−1(v1), v2). As both s̃(·, ·) and ξ−1(·) are consistently estimated,

ŝ(·, ·) = ˆ̃sn(ξ̂−1
n (·), ·) p→ s̃(ξ̂−1

n (·), ·) and s̃(ξ̂−1
n (·), ·) p→ s̃(ξ−1(·), ·) by the continuous mapping

theorem. Hence ŝ(·, ·) p→ s(·, ·).
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A.4 Monte Carlo studies

I conduct Monte Carlo studies to evaluate the ability of the estimation procedure to recover

the synergy function. The model underlying the simulation is specified as follows: F (v1, v2)

is represented by Epanechnikov marginal distributions on support [0,1] and a Gaussian

copula with Kendall’s tau of 0.3, constant synergy subject to support [0,1] i.e. s(v1, v2) =

min(v2 + 0.1, 1), and N = 2. Figure 5 displays the synergy functions estimated from 1000

Monte Carlo runs against the true synergy function used to generate the data. The sieve

orders were selected by minimizing the criterion 0.5k − 2 ln(L), where k is the number of

parameters and ln(L) is the log likelihood of the data. This is the same criterion I use in

my application. I compare this criterion against other criteria below.

Figure 5: Monte Carlo estimates of synergy function

Selection criteria for sieve orders I compare the following selection criteria: the

AIC (Akaike information criterion), BIC (Bayesian information criterion), and two other

criteria that have a weaker penalty on the number of parameters k, namely “IC3” =

k − 2ln(L) and “IC4” = 0.5k − 2ln(L). To perform this comparison, I first simulate the

(integrated) MSE of estimators for F2(·|·) and D(·|·) over 1000 Monte Carlo runs, vary-

ing sample size for each model selection criterion. Specifically, the MSE is computed as

1
m

m∑
i=1

˜
{F̂2i(v2|v1)−F2(v2|v1)}2d2F (v1, v2) for F2(·|·) and analogously for D(·|·), where m

is the number of Monte Carlo runs. For the largest sample size tried of 10,000, I use 750

rather than 1000 Monte Carlo runs due to longer computational time. Next, I hold the

sample size constant at 500 and repeat the MSE computation using a different F (v1, v2)

distribution: normal marginal distributions distributed ∼ N(0.5, 0.15) related by a Clay-

ton copula with Kendall’s tau of 0.3. Figures 6 and 7 display the results. The criterion

0.5k − 2 ln(L) generates the smallest mean squared error across these specifications.
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Figure 6: Selection criterion comparison by mean squared error, varying sample size
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Figure 7: Selection criterion comparison by mean squared error, varying distribution
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Bootstrap percentile interval coverage rate I also use the model specified above

to perform a Monte Carlo simulation of the coverage rate of a 95% bootstrap percentile

interval for s(v1, v2). The simulated sample size is 500. I conduct 1000 Monte Carlo runs

of estimating s(v1, v2), in which I compute a bootstrap percentile interval based on 1000

bootstrap samples of each Monte Carlo run, i.e. I estimate s(v1, v2) a total of 1 million

times, each time using a different bootstrapped Monte Carlo data sample. Then, for a

grid of v2 values, I compute the probability across the 1000 Monte Carlo runs that the 95%

bootstrap percentile interval generated from that run contains the true s(median v1, v2) used

to generate the data. Note that for each simulated dataset, functions of v2 are identified

only for v2 in the A2 price support of that dataset. Therefore, the coverage rate is computed
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for values of v2 in the intersection of the 1 million different A2 price supports generated by

the Monte Carlo-of-bootstrap procedure. Figure 8 displays the coverage rates computed.

The average coverage rate across a uniformly spaced grid of v2 is 0.9534. It appears that

the bootstrap interval behaves well.

Figure 8: Coverage rate of 95% bootstrap percentile interval for s(v1, v2)
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A.5 Additional empirical details

Table 8: Probit regression results for probability of winning second auction

(1) (2) (3) (4) (5)
N ≥ 2 N ≥ 2 N ≥ 2 N = 2 N = 3

Won first auction 1.561 2.045 2.041 1.723 1.769
(0.093) (0.197) (0.201) (0.169) (0.194)

Number of bidders fixed effects Y Y Y - -
Bidder fixed effects Y N N Y Y
Bidder-date fixed effects N Y Y N N
Lease descriptive covariates† N N Y N N
Observations 1557 612†† 612 381 405

Standard errors in parentheses
†Lease descriptive covariates are described in section 6.2.
††Adding bidder-date fixed effects decreases the number of usable observations.
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Comparing post-auction production data for A1 and A2 leases

I look to post-auction production data for extra-auction evidence that F1(·) and F2(·) should

be similar. In Table 9, an OLS regression of log production (in barrel of oil equivalents from

the auction date through 2014) on a dummy variable for A1 (first auction) indicates no sta-

tistically significant difference between tracts auctioned in A1 versus in A2. In the same

table, a probit regression of whether production exists similarly indicates no statistically

significant difference. Finally, in Figure 9 the histograms compare the distribution of log

production, conditional on production being positive, for A1 tracts and A2 tracts, respec-

tively. The production distributions look similar visually. All of this suggests that there is

no difference in quality between A1 and A2 leases.

Table 9: Regression of log production on A1 dummy

OLS probit
ln(prod) prod>0

A1 dummy -0.156 -0.066
(0.220) (0.077)

Constant 1.788 -1.112
(0.155) (0.054)

Observations 1744 1744

Standard errors in parentheses.

Figure 9: Histograms of log production, A1 and A2
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Table 10: Regression of ln(sealed bid) on observable characteristics

lnbid
heatmap index 0.710

(0.057)
ln(oil prod) 1970-auction date 0.022

(0.014)
ln(oil prod) auction date-2014 0.012

(0.007)
lease prefix V0 pre-2005 0.091

(0.065)
lease prefix VB pre-2005 0.102

(0.280)
lease prefix VB post-2005 0.330

(0.076)
ln(nat gas 1 mo futures) 0.317

(0.132)
ln(WTI oil price) 0.134

(0.221)
ln(prior month price/acre) 0.123

(0.061)
ln(BLM price/acre) 0.267

(0.055)
Constant 0.157

(0.966)
Year fixed effects Y
Month fixed effects (seasonality) Y
Observations 2095
R2 0.261
Adjusted R2 0.248

Heteroskedasticity robust standard errors in parentheses
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Figure 10: Minimand of the estimator for ρ, as a function of ρ
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A.6 Alternative specifications

I estimate the synergy function under three alternative specifications to see how much the

estimates differ from that of Figure 3. First, I restrict the estimation sample to auctions

with two bidders (N = 2) only. This is a subsample for which the evidence in Table 2 and

A2 prices above the minimum acceptable bid provide sufficient confidence that A1 and A2

typically share the same bidders. The N = 3 sample does not share this property because

there is no way to disprove attrition, i.e. from three bidders in A1 to two bidders in A2.

The caveat is that this reduces the estimation sample to 250 pairs of auctions, leading to

less precision (wider bootstrap intervals). Figure 11 displays the resulting synergy plot.

Recalling that the 90th percentile of v2 is roughly $85,000, the N = 2 synergy estimate

diverges from the pooled estimate at large values of v2 where data is sparse and confidence

intervals are wider. On the other hand, it is close to the pooled estimate below the 90th

percentile where data is concentrated.
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Figure 11: ŝ(v1, v2) at median v1 and z′β, N = 2 only
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Second, I repeat the structural estimation procedure conditioning F2(·|·) and D(·|·) on

the number of auctions a bidder wins between A1 and A2, w; that is, I estimate F2(·|v1, w)

and D(·|v1, w) and the resulting synergy function. A caveat is that this leads to using trivari-

ate Bernstein polynomials rather than bivariate in the sieve maximum likelihood estimation

step, increasing the number of parameters to be estimated and reducing precision.31 The

median value of w is 3. Figure 12 plots at different values of w the synergy functions es-

timated conditional on w along with the original, unconditional estimate. Up to the 90th

percentile of v2, synergy estimates do not vary much with w. At very large values of v2,

synergy estimates increase with w. This suggests that winning other auctions increases the

boost in value of the second item that comes from winning A1, perhaps due to combined

synergies across multiple items. However, data is sparse for v2 > $85, 000. For v2 < $85, 000

where data is concentrated, the synergy plots for different values of w overlap.

31I choose a polynomial degree of 1 for w, because even this low degree doubles the number of
polynomial parameters to be estimated.
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Figure 12: ŝ(v1, v2) at median v1 and z′β, conditional on number of auctions won
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Third, rather than excluding observations in which the A2 winner did not bid in A1

(refer to section 6.1), I include these observations and estimate a model in which there is

always one additional bidder in A2 than there is in A1. The “extra” bidder draws his value

from a distribution Fex(·), which I estimate via a Bernstein polynomial of degree 10. Figure

13 displays the resulting synergy plot. Including the extra data makes little difference to

the estimated synergy function.
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Figure 13: ŝ(v1, v2) at median v1 and z′β, allowing for extra A2 bidder
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