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I estimate a structural model of auctions in which rivals’ participation is stochastic,

allowing for bidders’ risk aversion and asymmetry. Counterfactual simulations reveal

that bidders’ uncertainty about the number of entrants, combined with risk aversion,

substantially softens the revenue impact of low competition in first-price auctions. This
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1 Introduction

This article presents empirical evidence that uncertainty about the number of entrants com-

bined with risk aversion, a very plausible feature of real-world auctions, is of first-order

importance for auction design. In a government auction program where first-price auctions

generate significantly higher revenue than English auctions, I document evidence that bidders

are uncertain about the number of auction entrants. Motivated by additional data evidence,

I estimate a structural model of auctions in which rivals’ participation is stochastic from the

bidder’s point of view, allowing for bidders’ risk aversion and asymmetry. Counterfactual

simulations using the estimated model reveal that bidders’ uncertainty about the number

of entrants, combined with risk aversion, substantially softens the revenue impact of low

competition in first-price auctions but has no effect in English auctions. This explains the

observed revenue difference between auction formats and uncovers an empirically important

reason for sellers to favor first-price auctions over English auctions. To my knowledge, this

is the first study to show the empirical importance of uncertainty about entrants and risk

aversion.

I study auctions run by the New Mexico State Land Office (NMSLO) in the Permian

Basin between 2005 and 2014; the Permian Basin is one of the most prolific and economically

important oil and gas basins in the world.1 I document the following data patterns. (1)

The first-price sealed-bid auction generates about 30 percent higher revenue than English

auctions, controlling for characteristics of the auction item. (2) Bidders in the sealed-bid

auction bid several multiples of the publicly announced reserve price even when they are the

only bidder, whereas single-bidder English auctions yield exactly the reserve price. Pattern

(2) reveals that bidders face uncertainty about the number of auction entrants; if a bidder

knew for certain he was the only entrant, he would have bid the reserve price, which is

the minimum acceptable bid. Meanwhile, I note that the majority of bidders are small,

local independent operators, which makes it likely that at least some bidders are risk-averse.

1https://www.britannica.com/place/Permian-Basin
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Whether bidders are risk-averse is important because we know from auction theory (McAfee

and McMillan (1987) and Matthews (1987)) that, although uncertainty about entrants is

revenue-neutral under risk-neutrality, it breaks revenue equivalence in the same direction

as pattern (1) under reasonable forms of risk aversion. Intuitively, risk-averse bidders in

first-price auctions insure themselves against the possibility of a large number of entrants

by bidding relatively high, even when the expected number of entrants is low. Bidders also

exhibit asymmetry, which, as shown in Maskin and Riley (2000a), can contribute to pattern

(1) as well.

To understand the cause of the revenue difference between auction formats, I estimate

an auction model in which bidders are uncertain about the set of entrants and allowed to be

asymmetric and risk-averse. From a bidder’s perspective, each potential competitor enters

the auction with some known probability, resulting in uncertainty about the set of entrants.

I allow these entry probabilities to differ by auction format, so that different entry rates

can also be an explanation for the observed revenue difference. Exploiting the presence of

two auction formats, I nonparametrically identify and estimate bidders’ value distributions

and utility functions. Estimates indicate that bidders are moderately risk-averse, at a level

similar to what has been measured in previous studies of risk aversion.

Counterfactual simulations that isolate the effect of each model feature reveal that uncer-

tainty about entrants combined with risk aversion is the main cause of the observed revenue

difference between first-price and English auctions. This finding is robust to alternative spec-

ifications of the details surrounding auction entry, such as the number of potential bidders

and whether entry is selective. Uncertainty and risk aversion yield this outcome by boosting

revenue in first-price sealed-bid auctions while not affecting English auctions. The boost

is largest when the number of realized entrants is low, softening the negative effect of low

competition. Empirically, the magnitude of this boost is often similar to that of having one

additional entrant. As such, this is a first-order consideration for sellers choosing between

first-price and English auctions in low competition environments.
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The qualitative patterns documented in this study are not particular to the NMSLO

auctions; they are consistent with early intuition in natural resource policy that preceded –

and did not have the benefit of – the auction theory used in this article. Surveying federal

and state natural resource auctions, Mead (1967) remarks anecdotally that even when “a

lack of bidder interest [...] results in one-bidder sales under sealed bid procedures, such

sales may yield a price close to a competitive price,” and where “competition is unreliable,

sealed bidding is the more appropriate method since it introduces a measure of uncertainty

about who may appear as a bidder.” The findings are also important because, as Bulow

and Klemperer (1996) have noted, low competition is a critical concern, and it is common

in government auctions; Haile, Hendricks and Porter (2010), in their description of U.S.

offshore oil and gas lease bidding, remark that “93% of tracts sold attracted one or two

bids” in 1998-2002.

Related literature Empirical evidence for and consequences of bidders not knowing the

number of entrants is a focus of this article. To be clear, this study is not alone in allowing

uncertainty about the number of entrants, but it is unique in empirically documenting the

implications thereof for choice of auction format and protection from very low revenue.

Empirical studies that allow bidders’ uncertainty about the number of entrants include the

internet auction literature, which often models bidders’ arrival as a Poisson process, and some

of the literature on endogenous bidder entry. Note that this uncertainty makes a difference

only when the bidding strategy depends on the number of entrants. For auctions modeled

as second price auctions with private values, this uncertainty is irrelevant for bidding.

In this existing literature, uncertainty about entrants is not a focus per se but a byproduct

of the entry model. Examples include Li and Zheng (2009), who analyze the effect of an

increased number of potential bidders when entry is endogenous, and Bhattacharya, Roberts

and Sweeting (2014), who examine the merit of different ways to organize bidders’ entry.

In other studies, including Athey, Levin and Seira (2011) and Krasnokutskaya and Seim
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(2011), bidders enter endogenously but learn the number of competitors before bidding.

Athey et al. (2011), in particular, also use data from two different auction formats and

compare their performance, finding that first-price auctions attract more small bidders than

English auctions. In all the aforementioned studies, bidders are risk-neutral.

Two methodological studies that allow both risk aversion and bidders’ uncertainty about

entrants are Li, Lu and Zhao (2015) and Gentry, Li and Lu (2017). Li et al. (2015) develop

a test for the form of risk aversion based on symmetric bidders’ entry into first-price versus

ascending auctions, and Gentry et al. (2017) study identification in first-price auctions with

risk-averse bidders and selective entry. Neither is concerned with a revenue comparison

between different auction formats.

The theoretical foundations for my study come from McAfee and McMillan (1987) and

Matthews (1987), who show that, under nonincreasing absolute risk aversion, expected rev-

enue in a first-price auction is higher when bidders do not know the number of bidders n than

when they do. Per Riley and Samuelson (1981), revenue in the latter case is in turn higher

than in an English (or second-price) auction, which is unaffected by uncertainty about n.

This is in contrast to the risk-neutral case, in which first-price and English auctions with or

without uncertainty about n would all be revenue-equivalent, as Harstad, Kagel and Levin

(1990) show. Menezes and Monteiro (2000) show that this revenue ranking of first-price over

second-price auctions continues to hold under a model of endogenous entry. As these studies

are concerned with general theoretical results for expected revenue, they do not disaggregate

revenue patterns, discuss magnitudes, present empirical evidence, or specifically discuss the

case of low competition.

Meanwhile, when laboratory experiments induce uncertainty about n, the revenue rank-

ings that result are largely consistent with these risk-averse models and inconsistent with

risk-neutral models. Dyer, Kagel and Levin (1989), Isaac, Pevnitskaya and Schnier (2012),

and Aycinena and Rentschler (2018) perform such experiments.

More generally, although empirical studies typically assume risk neutrality, bidders are

4



found to overbid relative to risk-neutral Nash in first-price auction experiments. Risk aver-

sion has long been considered a candidate explanation for the overbidding, for instance in

Cox, Roberson and Smith (1982) and Cox, Smith and Walker (1983). Bajari and Hortaçsu

(2005) take data from a first-price auction experiment and compare four alternative struc-

tural models in their ability to recover bidders’ value distributions from observed bids. They

find that a risk-averse Bayes-Nash model performs better than both risk-neutral Bayes-Nash

and behavioral models of bidding.

2 New Mexico’s Oil and Gas Lease Auctions

Overview

The New Mexico State Land Office (NMSLO) administers oil and gas leases on its trust

lands. These leases grant the lessee the exclusive right to drill the leased land for a specified

number of years. In return for the lease, the lessee pays the lessor an upfront lump sum

“bonus”, which can be considered the price of the lease, in addition to an annual rental and

royalties on production. These leases are sold via monthly auctions where bidders bid on

the amount of the bonus, of which the public reserve price is approximately $15.63 per acre.

Eighty percent of the leases auctioned since 2005 are located in the Permian Basin. The

Permian Basin has produced oil for 100 years and “is one of the most well-studied geologic

regions of the world” “owing to its economic importance”;2 at the end of 2018, it was the

second most productive oil field in the world.3

Conversations with agency staff as well as bidders reveal that valuations of a lease are

idiosyncratic by bidder. Firms have different probabilities of drilling the tract within the five-

year lease term, which depends on how they see the lease fitting into their overall portfolio and

development strategy. They also differ in well and field design, recovery rates, aggressiveness

2https://www.britannica.com/place/Permian-Basin
3https://www.forbes.com/sites/rrapier/2018/12/27/why-the-permian-basin-may-become-the-worlds-

most-productive-oil-field/
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of hedging programs, cash flow, and alternative options for land acquisition to name some

examples. All of these things factor into how they value a lease.

An interesting feature of the NMSLO auctions is that it uses both the first-price sealed-

bid (S) and English or ascending oral (O) auction formats within the Permian Basin. As

later sections explain, this feature will deliver extra insights regarding the practice of auctions

beyond what could have been learned from single-format datasets. The first-price sealed-bid

auctions are run via mail-in bids which are opened on auction day, whereas the English

auctions are run via a live auctioneer one at a time. During 2005-2014, an average of 19 and

18 Permian Basin leases were sold each auction day via the S and O formats, respectively.

The NMSLO records the dollar amount and bidder identity for every bid submitted in the

first-price sealed-bid (S) auction. Only the transaction price and winner identity are recorded

for the English (O) auction. Hence, the number of entrants for each lease is observed in the

data for S but not for O. Figure 1 shows that overall, the number of entrants per auction is

not high, with a mean and median of 3 sealed bids, and 46% of auctions receive 2 or fewer

bids.

To learn whether there are bidders who participate exclusively in one auction format,

I compare the bidder names observed in S to the winner names observed in O; this is an

imperfect comparison because only the winners’ names are observed in O. Specifically, I

compute the fraction of O auctions that are won by bidders who also bid in the S auctions,

and the fraction of S bids that come from bidders who also win in the O auctions. Table 1

provides year- and area-specific comparisons as well as a comparison based on the aggregate

data (labeled “All”). The fraction of O wins from S bidders is always higher than the fraction

of S bids from O winners, as expected when all bidders are observed in S but only the winning

names are observed in O. The former fraction is above 90% in every year and area, and 98%

in the aggregate comparison. Overall, the vast majority of auctions involve bidders that are

recorded to have participated in both formats.

Also, I do not find that bidders withdraw or reduce their participation rate after winning
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auctions. To check this, I regress each bidder’s S participation rate in quarter t on the

number of auctions it won in quarter t − 1 in a fixed effects regression with bidder fixed

effects, using 8,463 bidder-quarter observations. The regression coefficient on auctions won

in the previous quarter is 0.0076, a small positive number, with clustered standard error

0.0009.

As for the size of land tracts covered by these leases, 320 acres (half a square mile) is

by far the most common. To avoid excessive heterogeneity, I focus the analysis that follows

on 320-acre leases in the Permian Basin sold during 2005-2014, excluding outlier leases that

have a quality index in the top or bottom 5%. The quality index is a scalar summarizing the

characteristics of the lease, which are described shortly; the formation of the quality index

is detailed in Section 5. Meanwhile, Kong (2017) uses a subset of the NMSLO auctions in

which adjacent leases are sold to study the identification of synergy between auctions. To

abstract away from inter-auction effects, I exclude the entire subset analyzed by Kong (2017)

from my analysis. Going forward, I refer to this set of leases as my estimation sample.4

Differences between auction formats

Figure 2 maps the sections – one-square-mile (640-acre) blocks of land in the Public Land

Survey System – that contain my estimation sample, color-coded by the auction format(s)

used in each section. It shows that S leases and O leases are not spatially segregated but well

mixed. Nonetheless, I do not rely on unconditional exogeneity of auction format but control

for lease characteristics, including ex-post production volume and a measure of unobserved

heterogeneity, to assess the effect of auction format on revenue, as explained below.

Table 2 provides a summary of sample size, auction revenue, and the observable char-

acteristics of leases by auction format. Observable characteristics fall into three categories:

lease terms, location of the tract (encompassing geological features), and time of auction

4Bhattacharya, Ordin and Roberts (2018) use NMSLO auctions in the Permian Basin to study the
relationship between the auctions and drilling activity. They focus on the first-price sealed-bid auctions only
and exclude premium (VB) leases from their data sample.
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(industry, economic, local conditions of that time). In the first category, the royalty rate is

indicated by the lease prefix; tracts deemed “regular” are assigned a “V0” lease prefix with

16.67% royalty, and tracts deemed “premium” are assigned a “VB” lease prefix with 18.75%

royalty. The annual rental is either $0.50 or $1 per acre depending on geographic location.

I observe the location of the leased tract, which implies geological information. This

includes the barrel-of-oil-equivalents (BOE) produced on the tract between 1970 and the

auction date and the BOE produced after the auction date through 2014. I also observe

whether a drill bit is recorded to have been drilled into the ground (“spudded”) somewhere

in the same section as the lease prior to its auction date. I come back to quantifying the

unobservable information implied by geographic location shortly.

To represent the effects of time, the table includes oil prices (West Texas Intermediate)

and gas prices (natural gas 1 month futures) at the time of auction. In addition, average

price per acre in the previous month’s auctions and average price per acre in the federal

Bureau of Land Management’s5 lease sales in the same quarter are included to reflect local

and industry conditions around the time.

According to the table, there is a noticeable revenue difference between the two auc-

tion formats, but there are also differences between the auction items sold. I next assess

whether auction format matters for revenue after controlling for these lease characteristics.

In particular, I include ex-post production volume directly as a control variable, so any re-

maining differences between formats cannot be attributed to production volume. Of course,

leases may differ between formats in more general ways – including but not limited to costs,

difficulty of development, etc. – due to unobserved geographical and geological features. Im-

portantly, however, these features are not discontinuous but are expected to change gradually

in geographic location; they are similar for nearby tracts.

Following Kong (2017), I exploit this property of land-based heterogeneity to construct a

smooth, location-based “heatmap” index as follows. I take deflated sealed-bid data from the

5The BLM is a bureau that manages federal public lands, and is distinct from the State Land Office that
manages state trust lands. Their auctions are quarterly.
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NMSLO auctions and fit a smooth surface of the log bids per acre on geographic (north-south

and east-west) coordinates using local quadratic regression. This procedure is performed once

for each auction, excluding own-auction bids from the smoothing procedure, and the index

for each tract is the value predicted by the fitted surface excluding own-auction bids. This

heatmap index is meant to capture the effects of location-determined unobserved heterogene-

ity. The key assumption underlying this procedure is that unobserved quality is spatially

continuous; the index for a given lease could be confounded if that lease lacks a quality

shared by all nearby leases. Oil leases satisfy this assumption because unobserved quality

is closely tied to geological features, which are continuous in space. For example, Hodgson

(2018) models the probability of a successful well as a continuous function over space and

explains that such spatial interpolation is representative of industry techniques for predicting

geological features.

As a preliminary assessment of the heatmap index’s ability to capture location-determined

heterogeneity, Table 3 regresses post-auction production volume on the heatmap index and

compares the index’s explanatory power to that of the other covariates. A comparison of

the resulting R2 values indicates that the heatmap index explains more of the variance

in production than all of the other covariates combined, confirming its ability to pick up

heterogeneity not captured by the other covariates.

Table 4 column (1) displays a regression of auction revenue on auction format, controlling

for the observable characteristics listed in Table 2 and year and calendar-month fixed effects.

Column (2) additionally controls for the heatmap index. In column (1), all of the statistically

significant coefficients – on the “premium” lease prefix dummy, ex-post production volume,

oil price, and same quarter BLM price per acre – have the expected positive signs. In column

(2), all coefficients retain the same signs, but the coefficients associated with geography and

geology shrink considerably as the heatmap index soaks up location effects. The coefficient

on the heatmap index is particularly encouraging with regard to its relevance; the index

is in units of log dollars, so the interpretation is that the elasticity of auction price with
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respect to the index (converted to dollars) is 0.95. Moreover, the adjusted R2 increases

from 0.156 to 0.268 after inclusion of the heatmap index, demonstrating that it captures

additional heterogeneity not represented by the other covariates. The coefficient on auction

format remains relatively stable by contrast and statistically significant at the 1% level,

corroborating evidence from the map that the observed revenue difference is not explained

away by systematic disparities in geography or geology. Strikingly, using the sealed bid (S)

format over the English (O) format is associated with a log revenue difference of 0.305 even

after controlling for the observed and unobserved heterogeneity of auction items.

In light of the revenue difference in favor of the S format, it is interesting that the O

format is used at all. The reason is likely multifaceted. Partially, it is a historical idiosyncracy

of New Mexico, as the practice has been maintained for decades although no other state or

federal leasing agency currently uses both formats. Partially, the O auction offers benefits

that are not directly represented by auction revenue. For instance, O auctions facilitate the

realization of synergies between adjacent leases in Kong (2017).

Uncertainty about the number of entrants

I now investigate in more detail the patterns behind the S-O revenue difference documented

above. Figure 3 plots a histogram of the price obtained in auction, separately for each

auction format. One immediately noticeable difference between the two formats is that O

has a large concentration at the bottom end of prices, whereas S does not. Those first two

bars in the O histogram consist entirely of reserve price sales, where the tract sold exactly

at the reserve price. By nature of the auction format, a reserve-price O sale indicates that

only one bidder raised his hand at the English auction. So the mass at the bottom of the O

histogram is caused by auctions with one entrant.

I find that 16% of S auctions also receive only one bid. So why doesn’t the S histogram

have a similar mass at the reserve price? It turns out that in the S auctions, one-bidder leases

sell for on average 7.0 times the reserve price; the median is 4.6 times and the standard
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deviation of this multiple is 7.6. As shown in Table 2, no S auctions have a price equal

to the reserve price. Clearly, the lone bidders in the S auction did not know beforehand

that they would be the only bidder. If they had known for certain, they would have bid

the minimum acceptable bid, so these leases would have sold at the reserve price, just

as in the O auction. This demonstrates that bidders are uncertain about the number of

entrants they will compete against. They choose their S bids based on a prior they have

regarding the number of entrants n rather than the n realized ex-post. In the example of

n = 1 discussed above, bidders appear as though they “overbid” ex-post because their priors

assigned positive probability to the event that n > 1. More generally, when the realized n is

lower than expected, they will appear to have “overbid”; when the realized n is higher than

expected, they will appear to have “underbid.”

However, uncertainty about the number of entrants in itself is insufficient to match the

data patterns if bidders are risk neutral. Theory (see Harstad, Kagel and Levin (1990),

Krishna (2010)) says uncertainty about the number of entrants is overall revenue-neutral for

risk-neutral bidders. In the language used above, cases of “overbidding” when realized n

is low balance out cases of “underbidding” when realized n is high in such a way that the

uncertainty is revenue-neutral in the aggregate. Then S and O would be revenue-equivalent,

in contrast to the evidence in Table 4. Therefore, I proceed to discuss evidence for relaxing

two key assumptions underlying the revenue equivalence result: symmetry among bidders

and risk neutrality.

Asymmetry among bidders

As explained in Maskin and Riley (2000a) and Krishna (2010), asymmetry among bidders can

break revenue equivalence in either direction. Also, Athey, Levin and Seira (2011) explain

that asymmetry can lead to different entry rates into S versus O auctions.

I find evidence of asymmetry in the data. During 2005-2014, I observe 217 names bidding

in the Permian Basin, of which 116 appear in my estimation sample as defined previously.
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Extra-auction information is scarce for a large fraction of these names. Nonetheless, auction

statistics yield information regarding their heterogeneity. Recalling that winning is the only

statistic available for O, I observe that the average number of all Permian Basin wins per

name during these ten years is 19.4. In line with the Pareto Principle, the roughly 15% of

bidder names who exceed this average constitute roughly 85% of all wins. Following common

practice in modeling asymmetric bidders, I first divide bidders into two subgroups, defining

this top 15% of Permian names as “core” bidders and the remaining names as “fringe”

bidders. In addition, I distinguish the most frequent bidder as a separate subgroup due to

its dominant presence in these auctions. The most frequent bidder won roughly 30% of these

auctions, whereas no other bidder’s share exceeded single digit percentages.

Table 5 provides auction statistics from my estimation sample for each subgroup of bid-

ders. In the S auction, entry rates differ much more than win rates conditional on entry,

which look relatively similar between subgroups. With the exception of the top bidder, any

given bidder bids in a small fraction of the S auctions offered. Meanwhile, the top bidder’s

share of all wins is higher in S than in O, whereas this is reversed for the other bidder sub-

groups. Only the top bidder’s S-O difference in share of wins is statistically significant, as

the last row of Table 5 shows.

The model in Section 3 allows for asymmetry between these three subgroups of bidders.

This is a finite approximation of a richer asymmetry in which no two firms are the same

in practice and some characteristics of firms – such as a reputation for more sophisticated

hedging programs or larger cash flow – may be known among industry participants. In this

study, the finite approximation works better than usual because bidders do not know who

they are bidding against at the time of bidding; rather than bidding against a specific firm’s

bid distribution, they are genuinely bidding against a mix of multiple firms’ bid distributions.
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Risk aversion

Based on the identity of the bidders in the data, it is highly plausible that many are risk-

averse. I manually searched firm websites, Businessweek, Cortera, Hoovers, Linkedin, Manta,

Wikipedia, Yahoo, and other sources for employee counts on the bidder names I see in my

estimation sample. Among S bids from core bidders excluding the top bidder, 85% come from

names either for which I could not find information or which had less than 50 employees. This

figure is 82% among fringe bidders. Even the top bidder is a privately held, independent

company based locally in New Mexico, though relatively large at about 300 employees.

According to staff conversations, the majority of bidders in the NMSLO auctions are local

independent operators rather than major integrated companies. In general, we consider

smaller, privately held firms more likely to be risk averse. In the literature, George et al.

(2005) find that internal ownership of a firm is associated with more risk aversion, and Hiebl

(2013), surveying the literature on family firms, reports that family firms are found to be

more risk-averse than non-family firms in a majority of studies on the topic.

As reviewed in the literature section, risk aversion is often found to be the best expla-

nation of actual bidding behavior in experimental studies. Moreover, uncertainty about the

number of entrants is known to interact with risk aversion in a manner consistent with the

revenue ranking observed in my data. This makes intuitive sense; a risk-averse bidder is more

sensitive than a risk-neutral bidder to the risk of more bidders turning out than expected

and bids more aggressively as a result.

3 Model of auctions with asymmetry, risk aversion,

and uncertainty about the set of entrants

Motivated by the empirical evidence, I present a model of auctions with uncertainty about

the set of entrants, where bidders are allowed to be asymmetric and risk-averse. I assume

independent private values (IPV). This is not to say common values are not present in the
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empirical application; as in most real world auctions, private and common value components

likely coexist. I provide a few comments relating to this assumption. The Permian Basin is

an area where knowledge of the geology is more complete due to a long history of production

dating back to the 1920s. Permits for new seismic surveys are rarely requested in the basin,

as these are done only in areas that are not well known and much of the basin has already

been drilled in the past. Electric wireline logs from all drilled wells are made public by the

New Mexico Oil Conservation Division. Moreover, the data sample covers years 2005-2014,

coinciding with the boom in horizontal drilling and hydraulic fracturing, which also reduce

production uncertainty.6 This is important because the key feature of common value auctions

is that I as a bidder think other bidders have value-relevant information - e.g. about how

much oil is underground - that I do not possess. If all bidders have similar assessments of

underlying oil, non-common components are the primary driver of value differences, and that

is a private value auction. In terms of the limits of empirical methology, identification of

English auction models and identification of risk aversion under the common value paradigm

remain open questions at this time.

Regarding independent versus affiliated values, the predicted effects of affiliation go in the

opposite direction of the observed revenue ranking. As shown in Milgrom and Weber (1982)

and discussed in Krishna (2010), the O auction outperforms the S auction when values are

affiliated, and uncertainty about n further reduces S revenue due to the linkage principle.7

Finally, I assume the NMSLO’s reserve price is not binding, as the agency considers it a

“starting point” for serious bidders and tries not to offer tracts for which it might be binding.

6The following quote explains why horizontal drilling and hydraulic fracturing reduce production uncer-
tainty. “Previously an oil company had to intersect a geologic structure to be successful so the affected areas
were very small and the possibility of a dry hole was large. However with these new technologies the oil
companies are now able to drill into the oil bearing source rock so there are no dry holes, and the target area
is now in the form of a blanket (your oil bearing formation) as opposed to a point (a geologic structure).”
Source: http://www.niobraranews.net.

7The linkage principle establishes a revenue ranking of auctions based on the derivative of the expected
price paid upon winning with respect to one’s own signal. The steeper is this derivative or “linkage”, the
greater is auction revenue. Milgrom and Weber (1982) show that when values are affiliated, linkage is greater
in an English auction than in a first-price auction, and revealing information – such as the number of bidders
– increases linkage relative to concealing it.
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I discuss the implications of this assumption for my post-estimation analysis in Section 7.

Setup

There are M subgroups of bidders, denoted by m ∈ {1, ...,M}. The number of potential

bidders Nm in each subgroup is assumed to be common knowledge. Each subgroup has

potentially different distributions Fm(·) of values v on support [v, v̄] and utility functions

Um(·). To allow for risk aversion, let Um(·) be twice continuously differentiable with Um(0) =

0, U ′m(·) > 0 and U ′′m(·) ≤ 0. From a bidder’s perspective, each potential bidder from

subgroup m enters the auction with a subgroup-specific probability pm. As a result, bidders

do not know the number and composition of entrants that will actually participate in the

auction.

This type of uncertainty can be generated by any number of entry models. Here, I present

a model of bidding under the framework of nonselective entry. The endogenous entry model

of Levin and Smith (1994) – used by Li and Zheng (2009), Athey, Levin and Seira (2011),

and Krasnokutskaya and Seim (2011) – fits into this framework, but I remain agnostic as to

the specific entry model generating the observed entry probabilities. As a consequence, this

study will not attempt to make predictions that depend on a specific entry model; rather,

it will focus on the effect of bidders’ uncertainty about the set of entrants. In Section 7, I

check the robustness of my empirical findings to the selective entry framework.

In the remainder of this section, I discuss Bayesian Nash equilibrium for bidding in the

first-price sealed-bid auction and the English auction.

First-price sealed-bid auction (S)

Suppose every potential bidder from subgroup m enters with probability pm and employs a

monotonic bidding strategy denoted by bm(·; p), where p = (p1, ..., pM) is the profile of entry

probabilities. Define
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Jm(b|p) ≡ (1− pm) + pmFm(b−1m (b; p)),

which is the probability that a potential bidder from subgroup m either does not enter or

enters and bids less than b. The probability of winning W , for an entrant from subgroup m

who bids b, is the probability that all potential bidders either do not bid or bid less than b,

Wm(b|p) ≡ Jm(b|p)Nm−1
∏
i 6=m

Ji(b|p)Ni .

Note that uncertainty regarding the number of entrants is built into W , as each potential

competitor bids with probability pm. Now, the expected profit of a subgroup m entrant who

draws value v and bids b is

πm(v, b|p) ≡ Um(v − b)Wm(b|p). (1)

Then, the bidder chooses bid b to maximize πm(v, b|p), which yields a first-order condition

for bidding:

U ′m(v − b)
Um(v − b)

=
W ′

m(b|p)
Wm(b|p)

. (2)

Intuitively, the bidder chooses a bid that balances its marginal effect on his utility con-

ditional on winning against its marginal effect on the probability of winning. Replacing

Wm(b|p) with its definition and imposing the equilibrium condition b = bm(v; p) results in

a differential equation for the equilibrium bidding strategy of subgroup m. Lebrun (1999),

Maskin and Riley (2000a), and Maskin and Riley (2000b) among others have derived sys-

tems of differential equations characterizing equilibrium bidding with asymmetric bidders.

In general, closed-form solutions cannot be obtained for the bid functions. A monotone

pure-strategy equilibrium exists for this bidding game, as can be shown by relating this
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game to the framework in Reny and Zamir (2004).8 Maskin and Riley (2003) prove that

equilibrium is unique when all bidders have the same utility function, but uniqueness has

not been proven for asymmetric utility functions.

Anticipating the empirical analysis, it is useful to rewrite the first-order condition with

simplified notation. Defining λ(x) = U(x)
U ′(x)

, we have

λm(v − b) =
Wm(b|p)
W ′

m(b|p)
. (3)

English (ascending oral) auction (O)

Now consider bidding in the English (O) auction. The profile of entry probabilities is denoted

po = (po1..., p
o
M), where the “o” superscript indicates the O auction throughout. If only one

bidder enters the auction, that bidder wins and pays the reserve price r. Under the private

value paradigm, the English auction is equivalent to the second price auction. Even with

uncertainty, risk aversion, and asymmetry, it is still a weakly dominant strategy for each

bidder to bid his value. Although there can be other equilibria, this is the unique sequential

equilibrium.

4 Identification

Before describing my estimation procedure, I briefly discuss identification of the model. The

auction model with risk aversion and asymmetric bidders is not identified from either the

English (O) or first-price sealed-bid (S) auction alone absent additional conditions. This

relates to the nonidentification result in Guerre, Perrigne and Vuong (2009), which states

that the first-price auction model with risk-averse bidders is not identified from the observed

distribution of bids. The same is obvious for the English auction, as English auction bids

8Reny and Zamir (2004)’s model accommodates first-price auctions with risk-averse, asymmetric bidders
and a binding reserve price. The bidding game here can be reformulated as a first-price auction with a
binding reserve price v, where bidders draw v < v with probability 1− pm and draw v ∼ Fm(·) otherwise.
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contain no information about bidders’ utility functions. However, if the O auction and S

auction share the same Fm(·) and Um(·) - as they do here, sharing the same pool of bidders -

we gain identifying power by using data from both auction formats simultaneously as follows.

As a preliminary step, the entry probabilities p and po, as Bernoulli probabilities, are

identified from observed moments of the number of entrants as a fraction of potential bid-

ders. Then, value distributions are identified from O data by appealing to ideas from Athey

and Haile (2002); their Theorems 2 and 3 establish that asymmetric value distributions are

identified nonparametrically from transaction prices and winner identities alone. Next, tak-

ing these value distributions, a bidder’s utility function is identified nonparametrically from

her S auction bids as the function that satisfies the first-order condition for bidding in (3),

as in Lu and Perrigne (2008). This identification argument provides a basis for estimating

the auction model of Section 3, which is the topic of the next section.

5 Estimation

In this section, I develop a multi-step estimation procedure to estimate Fm(·) and Um(·). The

main steps of estimation consist of a sieve maximum likelihood estimator for Fm(·) followed

by a constructive estimator for Um(·) that exploits the first-order condition for bidding in

the sealed bid (S) auction. I also discuss how I estimate the number of potential bidders Nm

and entry probabilities pm and pom. Before describing this estimation procedure in detail, I

first address heterogeneity across auction items.

Auction-level heterogeneity

With many covariates or lease characteristics z, nonparametric estimators suffer from the

curse of dimensionality, meaning there is not enough data to condition estimates on every

combination of covariate values. In order to overcome this problem, I follow the literature in

taking a single index approach, in which the primitives depend on the vector z only through
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a scalar index z′β, i.e. Fm(v|z) = Fm(v|z′β). Note that I use the index only for conditioning;

this is different from the approach taken in Haile, Hong and Shum (2003), who subtract the

index from bids and work with the resulting residuals. I estimate β by regressing the log

of submitted sealed bids on all the covariates z listed in Table 4, excluding auction format.

Table 2 provides summary statistics of the covariates. The heatmap index described in

Section 2 is included to account for location-based unobserved heterogeneity.

Figure 4 shows the observed distribution of z′β̂, separately for the S and O auction. The

distributions are similar; the distribution for S has mean 10.53 and standard deviation 0.54,

and the distribution for O has mean 10.49 and standard deviation 0.56. Both have a median

of 10.48.

Number of potential bidders

Although I observe the identities of all bidders in the S auction and all winners in the O

auction for every auction, the number of potential bidders is not directly observed. The

list of leases to be auctioned and their descriptions are published online for free, and there

is no process for registering interest for a particular lease or auction date prior to bidding.

A common measure of potential bidders in the literature is the number of unique bidder

names Ñ observed in auctions of the same time period and area. As the number of items

auctioned grows large relative to the number of names, Ñ would converge to the true N .

However, in this dataset the number of items auctioned is not large enough to avoid an

undesirable feature of Ñ : even if the true N is fixed, variation in the quantity of auction

items generates substantial variation in observed Ñ . When each potential bidder enters with

some probability, by construction the number of unique bidder names observed in the data

increases with the number of items auctioned.

With this in mind, I estimate my model under two different specifications for counting

the number of potential bidders. In the primary specification, I count the number of unique

names from subgroup m bidding in the Permian Basin on each auction date, and let Nm be
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the largest of this count over all auction dates. This has the advantage of being immune to

the spurious fluctuations explained above, but has the disadvantage of being insensitive to

any genuine fluctuations in N . In the alternative specification, I count Nm separately for

each year and sub-area (Chaves county, Eddy county, Upper Lea county, Lower Lea county)

of the Permian Basin as the number of unique bidder names from subgroup m observed in

that year and sub-area. This has the advantage of being sensitive to genuine fluctuations in

N , but has the disadvantage of also fluctuating spuriously with the number of items offered

in that year and sub-area. Table 6 provides a summary of the Nm thus counted. Areas

outside the named counties do not have enough observations to compute the alternative

specification, so those auctions (7% of auctions in the estimation sample) are dropped in the

alternative specification.

Estimation of entry probabilities

As an intermediate step to recovering model primitives Fm(·) and Um(·), I need to estimate

the entry probability for each subgroup m. In the first-price sealed-bid (S) auctions, the

number of entrants nm is observed, so

pm(z′β) = E
[
nm

Nm

| z′β
]
.

I estimate pm(z′β) via a kernel regression of nm/Nm on z′β.

Meanwhile in the English (O) auctions, the number of entrants n is generally not observed,

though the events n = 0 and n = 1 are detectable as non-sales and reserve price sales,

respectively. As a result, estimating entry probability pom(z′β) requires much more data

than for S auctions and can be difficult in practice if n = 0 is a rare event, as it is in this

dataset. As a practical alternative, I take an approach which exploits the pm(z′β) estimated

from S auctions while still allowing entry rates to systematically differ by auction format. In

particular, I specify pom(z′β) = γmpm(z′β), where γm is a subgroup-specific parameter to be
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estimated as part of the maximum likelihood step explained below. This specification relies

on S data, where nm is directly observed, to learn how the number of bidders responds to

auction items of higher quality (z′β), while using O data to estimate systematic entry rate

differences between O and S.

Estimation of value distributions and O entry parameters

Recall that not all bids, but only transaction prices, are observed for the O auction. I

propose a sieve maximum likelihood estimator to estimate bidders’ value distributions and

O entry parameters γm from these observables. Specification of the likelihood relies only on

the transaction price equaling the second highest value among entrants.

Specifically, we see for each item k = 1, ..., K the transaction price and the identity of the

winning bidder. So the log likelihood of the observed data is the log likelihood of observed

transaction prices t and winner’s subgroups m given entry probabilities pom(·) = γmpm(·) and

auction covariates z.9 Namely,

K∑
k=1

log(Pr(2nd highest v among entrants = tk & winner’s subgroup = mk|γm, z′kβ)). (4)

The idea is to find the Fm(v|z′β) and γm that maximize this log likelihood. Before writing

the mathematical expression for (4), some notation is useful. Let Hm(t|pom, z′β) ≡ (1 −

pom) + pomFm(t|z′β), the probability that a bidder either does not bid or does bid with v ≤ t.

Also, define its derivative hm(t|pom, z′β) ≡ pomfm(t|z′β). Using Hm and hm as shorthand for

Hm(t|pom, z′β) and hm(t|pom, z′β), respectively, the likelihood of observing transaction price

t ∈ [v, v̄] and a winning bidder from subgroup m is

9The transaction price is a continuous variable, so Pr(2nd highest v among entrants = t) represents a
density.
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Nm(1−Hm)

[(
(Nm − 1)hmH

Nm−2
m

∏
i 6=m

HNi
i

)
+
∑
i 6=m

(
NihiH

Nm−1
m HNi−1

i

∏
j 6=i,m

H
Nj

j

)]
. (5)

This is the likelihood that the second highest value among entrants is t and the winner is

from subgroup m when there are Nm potential bidders from each subgroup who “draw”

their value from Hm(·|pom, z′β), which has built in the fact that each potential bidder bids

with probability pom. In addition, the likelihood of an observation where no one bids is∏M
m=1(1− pom)Nm , and the likelihood that a lease sells at the reserve price to a bidder from

group m is Nmp
o
m(1− pom)Nm−1

∏
i 6=m(1− poi )Ni .

To use sieve estimation, Fm(v|z′β) is approximated using a bivariate Bernstein polynomial

after normalizing v and z′β to have support in [0, 1], the domain of Bernstein polynomials.10

F (v|z′β) = Ba,b(v, z
′β)

≡
∑a

i=0

∑b
j=0 αi,j

 a

i

 vi(1− v)a−i

 b

j

 (z′β)j(1− z′β)b−j.

Polynomial approximation imposes that F (v|z′β) be continuous not just in v but also in

z′β. A useful property of Bernstein polynomials is that functional restrictions, which are

potentially complex, can be imposed via simple linear restrictions on the Bernstein coeffi-

cients αij. Specifically, as Fm(v|z′β) is a cdf, B(v, z′β) should be weakly increasing in v;

with Bernstein polynomials, this is imposed via the simple restriction that αi,j ≤ αi′,j if

i < i′. Properties of Bernstein polynomials are detailed in Lorentz (1986); other work using

Bernstein polynomials in the estimation of auction models includes Komarova (2017), Kong

(2017), and Compiani, Haile and Sant’Anna (2018).

Now the likelihood (5) can be expressed in terms of polynomial B(·, ·) by replacing Hm

10These normalized values are used only inside the Bernstein polynomial; when performing all other
calculations, true values are used.
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with (1 − pom) + pomB(t, z′β) and hm with pomB1(t, z
′β). Finally, Fm(v|z′β) and γm can be

estimated by finding the parameters αi,j and γm that maximize the log likelihood of the O

data.

Estimation of utility functions

I estimate nonparametric utility functions Um(·) for each subgroup by exploiting the first-

order condition for bidding in S, introduced in the model section and restated below:

λm(v − b) =
Wm(b|p)
W ′

m(b|p)
,

where λm(·) ≡ Um(·)/U ′m(·) and Wm(b|p) is the probability of winning for an entrant from

subgroup m who bids b conditional on entry probabilities p. As entry probabilities pm(z′β)

are functions of z′β, conditioning on z′β is sufficient to condition on p. In short, I estimate

λm(·) as the nonparametric function that maps v− b to Wm(b|z′β)/W ′
m(b|z′β), following the

logic of Lu and Perrigne (2008). Detailed steps follow.

Define Gm(b|z′β) to be the distribution of S bids from subgroup m conditional on z′β.

As bid functions are monotonic, the α-quantile of values should map to the α-quantile of

bids. Abstracting from conditioning on z′β for the remainder of the section, the first-order

condition can be written as λm(F−1m (α) − G−1m (α)) = Wm(G−1m (α))/W ′
m(G−1m (α)) as a con-

sequence. Having estimated the value distribution Fm(·) as explained before, I estimate

Gm(·) as the smoothed empirical cdf of observed S bids. As for the probability of winning

Wm(·), it is equivalent to the distribution of the highest competing bid facing a subgroup-

m bidder. These are directly observed, so I estimate Wm(·) as the smoothed empirical

cdf of highest competing bids. Having thus estimated Fm(·), Gm(·), and Wm(·), I use the

first-order condition above to construct λ̂m(·) as the function that maps F̂−1m (α) − Ĝ−1m (α)

to Ŵm(Ĝ−1m (α))/Ŵ ′
m(Ĝ−1m (α)), for every quantile α. Then, as λm(x) ≡ Um(·)/U ′m(·), I

have Ûm(y) = exp
∫ y

1
1/λ̂m(t)dt; this estimates Ûm(·) to scale, with the scale normalization
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Um(1) = 1. Other normalizations can be chosen as well; the scale is easily adjustable.

6 Estimation results

Figure 5 depicts the density of the estimated value distributions Fm(·) for each subgroup of

bidders, for both specifications of N described in Section 5; specification 2 is shown by the

dotted lines. Appendix Figure 11 provides the associated cumulative distribution functions

and bootstrap intervals thereof. In specification 1, the top bidder (subgroup 1) has a higher

mode than the fringe bidders, and the value distribution of core bidders (subgroup 2) is

bimodal. In specification 2, the fringe bidders’ (subgroup 3) distribution changes the most;

as seen previously in Table 5, fringe bidders constitute the smallest fraction of bids and wins.

As a result, there is less relevant data, and estimates for the fringe bidders are consistently

least precise among subgroups for all results that follow. Overall, there does not seem to be

a clear dominance relation among the subgroups’ value distributions.

Table 7 shows the estimated O entry parameters γm. As discussed in Section 5, γm is the

ratio of the O entry rate to the S entry rate for subgroup m. Figure 6 provides 95% bootstrap

intervals based on 1000 bootstrap samples and the primary specification of N . Subgroup 1

enters O at a lower rate than it enters S, whereas subgroup 2 enters O at a higher rate. The

bootstrap interval for subgroup 3 contains γ3 < 1, but overall it lies mostly in γ3 > 1. In the

next section, I account for these entry rate differences between auction formats as I analyze

the revenue patterns observed in the data.

The other estimated primitive is the utility function Um(·), which I estimate nonpara-

metrically as explained in Section 5. For purposes of presenting the level of risk aversion

concisely and comparing to the risk neutral benchmark, I also estimate Um(·) parametrically

using the constant relative risk aversion (CRRA) specification. Risk neutrality corresponds

to a CRRA parameter of zero, and positive parameter values indicate risk aversion. Table 7

presents the estimated risk parameters for each subgroup, and Figure 6 provides 95% boot-
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strap intervals based on the first specification of N . The bootstrap interval for subgroup

2 lies entirely in the positive risk aversion domain. The bootstrap interval for subgroup 1

contains risk neutrality but lies mostly in the positive domain. The bootstrap interval for

subgroup 3 is much wider than the others and contains risk neutrality. As a result, the null

hypothesis of risk neutrality cannot be rejected for subgroups 1 and 3. Meanwhile, regarding

the levels of risk aversion, the estimates are in the range of what is found in the literature;

Holt and Laury (2002) measure CRRA parameters centered around 0.3-0.5 in laboratory

experiments, and Lu and Perrigne (2008) measure roughly 0.59 using data from the U.S.

Forest Service timber auctions.

To assess model fit, I compare the observed data to data simulated from the estimated

model, according to the observed distribution of z′β shown in Figure 4. The sample size of

the simulated data is 100 times that of the observed sample. First, I compare the observed

versus simulated number of entrants n. In the O auction data, we observe n only when it

is 0 or 1. The observed probabilities of n = 0 and n = 1 in the estimation sample are 3.8%

and 11.9%, respectively, and the simulated analogs are 2.6% and 12.6%. Figure 7 similarly

shows the observed versus simulated distributions of n for the S auction, which are also close.

Next, I compare the observed versus simulated distribution of O prices - as only prices are

observed for O - and S bids in Figure 8. As n = 1 leads to a mass of reserve price sales in

O, Figure 8 excludes this mass and shows O prices for n > 1. Meanwhile, when it comes to

simulating S bids, rather than simulating asymmetric bid functions for every value of z′β,

which is a continuous variable, I simulate the representative case of median z′β and compare

to observed bids conditional on median z′β, where this conditioning is done via kernels.

Overall, the estimated model fits the data very well.
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7 Importance of uncertainty and risk aversion

Explaining the observed revenue patterns

In Section 2, we observed that the first-price sealed-bid (S) auction generates more revenue

than the English (O) auction and that lone bidders in S auctions bid much more than the

reserve price. According to auction theory, the model I estimated has multiple features that

could contribute to the observed revenue difference between S and O: (1) different entry rates

into the two auction formats, (2) bidders’ uncertainty about who will bid combined with risk

aversion, and (3) asymmetry between bidders. Fixing quality index z′β at the median value,

I investigate the contribution of each feature to the observed revenue patterns.

Table 8 summarizes the effect of each feature stated above on simulated auction revenue.

The first row simulates the full model. The second row shuts down feature (1) and shows

what revenue would be if O had the same entry rates as S. The third row shuts down both

features (1) and (2) by additionally making bidders know the set of entrants and be risk-

neutral. Simulating S revenue in the third row is not trivial because bid functions must be

numerically simulated for every possible combination of (n1, n2, n3), where nm is the number

of entrants from subgroup m. This is necessary because every combination of entrants leads

to a different bid function when the set of entrants is known by bidders as they bid. I

modify the algorithm of Fibich and Gavish (2011) to simulate each of those asymmetric bid

functions.11

We see, from examining each row, that feature (2) is the main contributor to S earning

more revenue than O. Feature (3) by itself would cause only a minor revenue difference in

this setting, and feature (1) works in the opposite direction of the overall revenue difference.

Both specifications of the number of potential bidders N , discussed in Section 5, lead to the

same qualitative conclusion. The rest of this section delves deeper into the Table 8 numbers.

For illustrative purposes, I use estimation results from the primary specification of N .

11The appendix describes how I modify the algorithm for type-symmetric bidding.
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First, consider feature (1). As a result of the entry rate differences shown in Table 7,

the O auction attracts on average 2.85 bidders, compared to the S auction’s average of 2.7.

This explains why O revenue in Table 8’s first row is higher than in the second row, where

feature (1) is shut down.

Next, consider the effect of feature (2). Figure 9 enables a more in-depth comparison of

Table 8’s second and third rows by disaggregating expected revenue by the realized number

of entrants n. The yellow bars depict current S revenue, corresponding to Table 8’s second

row, column S. The green bars show what S revenue would have been if risk-neutral bidders

knew the set of entrants when they bid, as is typically assumed in the empirical auction

literature. This corresponds to Table 8’s third row, column S. Finally, the dark blue bars

depict what O revenue would have been if entry rates were the same as in S, so that entry

rates are not a factor in Figure 9’s revenue comparison. This corresponds to Table 8’s second

row, column O. As a reference, the red dotted line marks the value of the item to the median

core bidder.

The dark blue and green bars confirm that a low number of entrants is very damaging

to auction revenue; cases with just one entrant are particularly devastating. In light of this,

the yellow bars are intriguing. When the number of realized entrants is low, the yellow bars

display a large revenue boost similar in size to having one additional entrant in the green

bars. In Section 2, we saw that one-bidder S auctions earn much more than the reserve price;

this evidence maps to the first yellow bar versus the first blue bar. Moreover, the yellow

bar for one entrant comes close to the green and blue bars for two entrants, consistent with

Mead (1967)’s remark that “one-bidder sales under sealed bid procedures [...] may yield a

price close to a competitive price.” Meanwhile, at high realizations of n, the yellow bars end

up “underbidding,” as bidders’ priors about n assign high probabilities to lower n. So the

yellow bars can drop lower than the green bars, but here the drop is not large enough to wash

out the gains made at lower realizations of n. This is due to the interaction of uncertainty

with risk aversion. In total, Table 8 and Figure 9 reveal that uncertainty combined with
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risk aversion can provide meaningful protection against the effects of low competition in a

real auction environment. This protection applies to the S auction but not to the O auction,

where bidders have a weakly dominant strategy for bidding unaffected by the number of

entrants or risk aversion. Therefore, this is a first-order reason for sellers to favor first-price

sealed-bid auctions over English auctions in low competition environments.

What is the overall revenue gained by running a first-price sealed-bid (S) auction instead

of an English (O) auction in the NMSLO setting? To quantify this, I take each of the

items auctioned by S in the estimation sample and simulate 100 O auctions conditional

on that item’s quality index z′β. This format change also accounts for the accompanying

change in entry rates; bidders now enter the auctions at O entry rates, not S entry rates.

As shown in Table 2, the observed average revenue per S auction is $128,822. Simulations

that convert these auctions to O predict that this revenue would drop to $101,848, or by

$26,974 per item. The simulated number is quite similar to the observed average revenue per

O auction, $102,481, which is consistent with Figure 4, where we saw that the distribution

of z′β is similar in the two auction formats. Therefore, $26,974 is also an approximation of

the revenue that would be gained per item by converting the O auctions to S. Of course, a

caveat when interpreting these simulations is that they are conducted assuming the number

of potential bidders would remain at current levels; they do not account for any changes in

the number of potential bidders that could result from converting all auctions to S or to O.

Robustness of findings

Robustness to selective entry

In estimation, the one restriction I placed on the entry model is that it be nonselective. Now

I examine the robustness of my findings to misspecification of the entry framework, or to the

possibility that the true entry model is selective. To clarify, nonselective entry means the

distribution of values conditional on entry does not depend on the entry rate. On the other

hand, if entry is selective, the distribution of values conditional on entry does vary with the
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entry rate because bidders with the highest values are most likely to enter. Therefore, if the

true entry model is selective, different entry rates between S and O can play a bigger role

in explaining the revenue patterns we observe. Specifically, we saw in Table 7 that the S

auction overall has a lower entry rate than O. Then under selective entry, entrants’ values

in S would on average be higher than in O, potentially contributing to higher revenue in S.

The severity of misspecification would increase with the degree of selectiveness. Therefore,

I subject my findings to the most stringent test of robustness by re-estimating the auction

model under the most selective form of entry, the perfectly selective entry model of Samuelson

(1985). If my findings persist under perfectly selective entry, they should persist under any

intermediate models between perfectly selective and nonselective entry, such as the entry

models of Marmer, Shneyerov and Xu (2013) and Gentry and Li (2014). In a perfectly

selective entry model, an entry rate of p implies that exactly those bidders in the top p

portion of the unconditional value distribution enter the auction. As a result, two aspects

of the estimation procedure change. First, the value distributions estimated in Section 5 are

now interpreted as value distributions conditional on entry at O entry rates. Second, when

estimating utility functions using S bids as in Section 5, the relevant value distribution must

be adjusted according to S entry rates. For example, if the entry rate in S is 1/γm times

that of O, with γm ≥ 1, the top 1/γm of the value distribution estimated from O would

be the relevant distribution for S. In Table 7 we saw that γm > 1 for subgroups 2 and 3.

Only subgroup 1 has γ1 < 1, entering S at a higher rate than O. For this subgroup, selective

entry actually works in favor of my original findings by reducing the contribution of different

entry rates to the revenue dominance of S. In this robustness test, I assume subgroup 1 has

nonselective entry for two reasons. First, this biases the test against my findings, making

it if anything more robust. Second, as perfectly selective entry left-truncates the value

distribution, we cannot infer the truncated portion, which is what we would need to do for

γm < 1.

After re-estimating the auction model under selective entry, I repeat the simulations of
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Table 8 in Table 9. Comparing Table 9 to Table 8, O revenue in the second row shows the

effect of selective versus nonselective entry; when O revenue is simulated at S entry rates,

the number of entrants decreases in both Tables, but in Table 9 the values conditional on

entry are higher, leading to higher revenue than in Table 8. Moving from the first to second

row in Table 9 narrows the S-O revenue gap, so as predicted, selective entry increases the

contribution of different entry rates to the observed revenue patterns. Nonetheless, the bulk

of the S-O revenue difference is explained by feature (2) as before. Thus, I confirm that this

finding is robust to selective entry.

Robustness to null hypothesis of risk neutrality for a subset of bidders

In the empirical analysis of auctions, bidders are commonly assumed to be risk-neutral

by default. In Figure 6, the null hypothesis of risk neutrality could not be rejected for

subgroups 1 and 3, whereas it was rejected for subgroup 2. At a general level, this leads

to an interesting question of whether the findings above can be relevant to settings where

only a subset of bidders are risk-averse and the remainder are risk-neutral. Specifically for

the NMSLO, we may ask whether the findings are robust if subgroups 1 and 3 are in fact

risk-neutral. I conduct a test of robustness in this regard by exploiting bootstrap samples in

which subgroups 1 and 3 have CRRA parameter estimates close to zero (risk neutrality). I

use these bootstrap samples and corresponding model estimates to repeat the simulations of

Table 8. Table 10 displays the results for bootstrap samples in which the CRRA parameters

were closest to zero. As before, feature (2) is the primary explanation for the observed

revenue difference between formats. The qualitative conclusion is the same as in Table 8 and

demonstrates that not all bidders need to be risk-averse for these forces to be important.

Discussion of the non-binding reserve price assumption

My model assumes that there is no binding reserve price. What would the implications of

this assumption be for my analysis if the reserve price r were binding in practice? The first
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implication would be that the Fm(·) I estimate would in fact be the left-truncated distribu-

tion F ∗m(·|v ≥ r), where the star superscript indicates the true unconditional distribution.

The second implication would be that the estimated non-entry probability (1 − pm) would

in fact be (1 − p∗m)F ∗m(r), the true non-entry probability multiplied by the constant F ∗m(r).

For my post-estimation analysis, the first implication is without loss as long as I do not

simulate changes to the reserve price; knowledge of the distribution to the left of the re-

serve is irrelevant for simulating bids because bidders with those values do not bid. The

second implication is without loss as long as I do not simulate new entry equilibria that

are different from the observed ones for each auction format; if I know the effective entry

rate (1 − p∗m)F ∗m(r), the separate knowledge of (1 − p∗m) and F ∗m(r) is irrelevant for simula-

tion. Therefore, the assumption is without loss for my post-estimation analysis, as I neither

simulate alternative reserve prices nor simulate new entry equilibria.

Ignoring uncertainty and risk aversion

The observation that lone bidders bid more than the reserve price is easily explained by

their uncertainty about who will bid, but it is a puzzle for “standard” models that ignore

uncertainty. Beyond this observation, the data contain additional phenomena that are easily

explained by my model but are awkward to rationalize for the standard model. Consider

the most common composition of S bidders observed in the estimation sample, an n = 2

auction with one bidder from subgroup 1 (recall that there is only one bidder in subgroup

1) and one bidder from subgroup 2. In S auctions with this composition of bidders, the

maximum sealed bid observed from the subgroup 1 bidder is about $180,000. In a standard

model where bidders know the set of entrants as they bid, we know from auction theory that

there is little reason for the other bidder to bid much more than $180,000 in these auctions.

However, the subgroup 2 bidder does in fact bid more 7% of the time, for a maximum bid

of about $400,000. More generally stated, the data show bidders choosing bids in regions

where the only other entrant’s bid distribution is very sparse. The phenomenon becomes
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even more pronounced after controlling for heterogeneity across auction items.

In the standard risk-neutral model, we know from Guerre, Perrigne and Vuong (2000) that

the value rationalizing each first-price auction bid is identified as vi = bi + G−i(bi)/g−i(bi),

where the G−i(·) and g−i(·) indicate the bid distribution and density of the other subgroup.

Therefore, the standard model would have to rationalize the phenomenon above - bids in

regions with very small g−i(b) - with very large v. Figure 10, displaying the value distribution

(CDF) estimated from the standard model, confirms this prediction.

In my model, the observed phenomenon is not a puzzle because bidders’ priors about n

place positive probability on there being other entrants, and this uncertainty is amplified by

risk aversion. The difference between the standard model’s estimate and mine in Figure 10

demonstrates that the consequences of ignoring uncertainty and risk aversion in empirical

analysis can be large.

8 Conclusion

This article shows that uncertainty about the number of entrants and risk aversion are

of first-order empirical importance in auction design. It does this by combining a rare,

dual-format auction dataset with a close examination of reduced-form data patterns and

nonparametric structural analysis. The structural model is data-motivated and rich, allowing

for asymmetry among bidders, risk aversion, and uncertainty about entrants; the latter two

features are seldom accounted for in the empirical auction literature. A key empirical finding

of the study is that, in first-price sealed-bid auctions, uncertainty combined with risk aversion

moderates the damage from a low number of entrants, often bolstering revenue by an amount

similar to having one additional entrant. The logic behind this effect is intuitive, it explains

the observed data patterns well, and its importance in explaining these patterns is shown to

be robust. This effect does not apply to English auctions. An immediate policy implication

is to favor first-price sealed-bid auctions over English auctions in low-entry environments.
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Figures and Tables

Figure 1: Histogram of number of bids received in S auctions, Permian Basin 2005-2014
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Table 1: Bidder pool comparison, Permian Basin 2005-2014
Fraction by year All 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

O wins from S bidders 0.98 0.95 0.97 0.92 0.95 0.95 0.98 0.98 0.92 0.97 0.95
S bids from O winners 0.97 0.90 0.89 0.81 0.86 0.86 0.91 0.96 0.89 0.86 0.94

Fraction by county All Chaves Eddy Upper Lea Lower Lea
O wins from S bidders 0.98 0.96 0.95 0.98 0.97
S bids from O winners 0.97 0.84 0.86 0.95 0.89
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Figure 2: Map of sections by auction format, estimation sample
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Each colored square is a section. The larger polygons are counties.
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Table 2: Summary statistics by auction format, estimation sample
S O

Number of auctions 674 556
Average across auctions:

Revenue ($) 128,822 102,481
Unsold 3.0% 3.8%
Sold at reserve price 0% 12%
Lease prefix VB 45% 36%
Annual rental per acre ($) 0.73 0.72
Production, 1970-auction date (BOE) 72,807 125,839
Production, auction date-2014 (BOE) 126,370 102,919
Well spudded before in same section 48% 43%
Natural gas 1 month futures in auction month ($) 5.8 6.0
WTI oil prices in auction month ($) 79.6 81.3
Average price/acre in BLM sale, same quarter ($) 878 1,115
Average price/acre in last month’s auction ($) 290 338
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Table 3: Preliminary assessment of the heatmap index

(1) (2) (3)
ln(production) ln(production) ln(production)

heatmap index 2.652*** 2.422***
(0.271) (0.268)

auction format S 0.205 0.142
(0.207) (0.194)

lease prefix VB 0.570** -0.078
(0.236) (0.233)

ln(production) 1970-auction date 0.038 0.030
(0.036) (0.034)

section drilled before 0.406* 0.364*
(0.223) (0.208)

ln(gas futures) 0.921 0.327
(0.809) (0.774)

ln(WTI oil price) 0.105 0.662
(0.726) (0.684)

same quarter BLM price/acre -0.380 -0.193
(0.263) (0.246)

last month price/acre -0.397* -0.288
(0.209) (0.195)

Constant Y Y Y
Year FE N Y Y
Calendar-month FE N Y Y
Observations 1189 1189 1189
R2 0.141 0.114 0.213
Adjusted R2 0.141 0.092 0.193

Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01
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Table 4: Auction format and auction revenue, estimation sample

(1) (2)
auction revenue auction revenue

auction format S 0.321*** 0.305***
(0.073) (0.068)

lease prefix VB 0.404*** 0.174**
(0.077) (0.072)

ln(production) 1970-auction date 0.003 0.002
(0.011) (0.010)

ln(production) auction date-2014 0.069*** 0.025**
(0.010) (0.011)

section drilled before 0.093 0.095
(0.074) (0.069)

ln(gas futures) -0.112 -0.305
(0.226) (0.205)

ln(WTI oil price) 0.497** 0.721***
(0.208) (0.196)

same quarter BLM price/acre 0.185** 0.242***
(0.074) (0.067)

last month price/acre 0.029 0.055
(0.093) (0.085)

heatmap index 0.953***
(0.070)

Constant Y Y
Year FE Y Y
Calendar-month FE Y Y
Observations 1189 1189
R2 0.177 0.287
Adjusted R2 0.156 0.268

Standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01
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Figure 3: Histogram of ln(price), estimation sample
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Prices are in 2009 dollars, deflated by the GDP implicit price deflator.

Table 5: Statistics by bidder subgroup, estimation sample
top core fringe

count of names 1 32 83
average number of entrants in a given S auction 0.84 1.63 0.41
average S entry rate 0.84 0.05 0.005
average S win rate conditional on bidding 0.40 0.38 0.32
subgroup’s share of S wins 0.35 0.54 0.11
subgroup’s share of O wins 0.30 0.58 0.13
p-value for test of null hypothesis that subgroup’s S share = O share 0.05 0.28 0.25
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Figure 4: Observed distribution of z′β in S and O auctions
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Table 6: Number of potential bidders by subgroup
Specification 1 Specification 2

average across years and sub-areas min max

N1 1 1 1 1
N2 15 13 4 21
N3 13 10 2 26
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Figure 5: Density of estimated value distributions at median z′β
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Table 7: Estimated O entry parameter γm and risk aversion levels
N - specification 1 N - specification 2

Subgroup γm CRRA risk γm CRRA risk
1 0.87 0.31 0.96 0.24
2 1.14 0.77 1.32 0.78
3 1.28 0.60 1.15 0.39

Figure 6: 95% bootstrap intervals for entry parameter γm (left) and CRRA parameter (right)
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Figure 7: Observed vs. simulated number of S entrants
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Figure 8: Observed vs. simulated distribution of O prices (left) and S bids (right)
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Table 8: Simulated auction revenue at median z′β
N - Specification 1 N - Specification 2

OOO O OOO OOO S OOO OOOO OOO OOOS OOO

(1),(2),(3) 87,736 118,718 93,707 121,332
(2),(3) 81,473 118,718 75,251 121,332

(3) 81,473 80,848 75,251 73,370
Definitions:

(1): Different entry rates into the two auction formats

(2): Bidders’ uncertainty about set of entrants combined with risk aversion

(3): Asymmetry between bidders

Figure 9: Simulated revenue disaggregated by realized n
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Table 9: Simulated auction revenue from estimating model based on selective entry
OOO O OOO OOO S OOO

(1),(2),(3) 88,021 116,692
(2),(3) 90,373 116,692

(3) 90,373 90,666
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Table 10: Simulated revenue based on bootstrap samples with risk-neutral subgroups 1 and
3

Bootstrap sample 1 Bootstrap sample 2
OOO O OOO OOO S OOO OOOO OOO OOOS OOO

(1),(2),(3) 83,590 103,520 78,911 88,573
(2),(3) 81,770 103,520 73,732 88,573

(3) 81,770 80,670 73,732 74,681
CRRA parameter estimates for subgroups 1, 2, 3:

Bootstrap sample 1: 0, 0.68, 0.02

Bootstrap sample 2: 0, 0.70, 0.02

Figure 10: Standard model’s estimated value distribution F̂2(·), median z′β
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Appendix

Figure 11: Estimated value distributions at median z′β, for subgroups 1, 2, and 3
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Fibich and Gavish (2011) algorithm modified for type-symmetric bidding The

asymmetric S bids in row (3) of Tables 8, 9, and 10 are simulated using the boundary-

value method as explained in Section 5 of Fibich and Gavish (2011). To reflect the type-

symmetric structure of my model, I modify the fixed-point iterations presented in equation

(27a) of that article; instead of iterating through n asymmetric bidders as presented there,

I iterate through n asymmetric subgroups of bidders with Nj bidders from each subgroup

j ∈ {1, ..., n}, updating bid functions at the subgroup-level rather than at the individual

level. The modified fixed-point iteration equations are given below. Let N ≡
∑n

j=1Nj.

dv
(k+1)
i

dvn
=
Fi(v

(k)
i )fn(vn)

fi(v
(k)
i )Fn(vn)

Ai(v
(k+1)
i − b(k))− (2−N)Bi

Di

, i = 1,...,n− 1,
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db(k+1)

dvn
=
fn(vn)

Fn(vn)

(N − 1)Bn(vn − b(k+1))

(vn − b(k))Dn

,

where

Bi ≡ (v
(k)
i − b(k))Ni−1

∏
j<i

(v
(k+1)
j − b(k))Nj

∏
j>i

(v
(k)
j − b(k))Nj ,

Di ≡ NiBi + (v
(k)
i − b(k))

[∑
j<i

NjBi

(v
(k+1)
j − b(k))

+
∑

j>i,j<n

NjBi

(v
(k)
j − b(k))

+
(1−

∑
j<nNj)Bi

(vn − b(k))

]
,

Ai ≡
(Ni − 1)Bi

(v
(k)
i − b(k))

+
∑
j<i

NjBi

(v
(k+1)
j − b(k))

+
∑
j>i

NjBi

(v
(k)
j − b(k))

,

and

Bn ≡ (vn − b(k))Nn
∏
j<n

(v
(k+1)
j − b(k))Nj ,

Dn ≡
∑
j<n

NjBn

(v
(k+1)
j − b(k))

+
(1−

∑
j<nNj)Bn

(vn − b(k))
.
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