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Abstract

This paper performs a structural analysis of selective entry in an empirical auction

market. The analysis allows for bidders' risk aversion and asymmetry. After document-

ing empirical evidence of the model, I exploit an entry cost shifter and auction format

variation (�rst-price and English) to establish identi�cation and develop a nonparamet-

ric estimation procedure recovering model primitives. I use counterfactual simulations

to show how bidders' entry-induced uncertainty about the number of other entrants,

combined with risk aversion, can substantially soften the revenue impact of low com-

petition in �rst-price auctions. This constitutes an important reason for sellers to favor

�rst-price auctions over English auctions.
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1 Introduction

Entry and selection have long held a central place in the study of markets. Entry recognizes

that the set of entrants in a market is determined by agents' endogenous choice. Selection

recognizes that, when choices are endogenous, the subset who choose �yes� (or �no�) are not

representative of the entire population.

This paper performs a structural analysis of selective entry in an empirical auction mar-

ket. Selective entry in auctions means bidders for each auction item are endogenously de-

termined and nonrepresentative of those who choose not to bid. The analysis employs a

general model allowing for bidders' risk aversion and asymmetry in addition to selective

entry. Taking advantage of an entry cost shifter and auction format variation in the data, I

establish identi�cation and develop a nonparametric estimation procedure that recovers all

the model primitives: bidders' value distributions, utility functions, and entry costs. Using

the estimated structural model, I quantify the impact of policies aimed at increasing bidder

competition.1 I also show how bidders' uncertainty about the number of other entrants,

caused by the entry process, can alleviate the negative e�ect of low competition on revenue,

particularly in conjunction with bidders' risk aversion. These a�ect bidding strategies in

�rst-price auctions but not in English auctions, constituting a reason for sellers to favor

�rst-price auctions in settings where competition is low.

The data I use in this analysis come from auctions for the New Mexico State Trust Lands.

The New Mexico State Land O�ce (NMSLO) uses both the �rst-price sealed-bid (S) format

and the English or ascending oral (O) auction format to sell its oil and gas leases. Curiously,

in the sealed-bid auctions, leases receiving one bid sell for roughly eight times the reserve

price.2 This tells us a number of things about the underlying auction. First, it must be that

bidders face uncertainty about the number of other bidders that will bid; if a bidder knew for

certain he was the only bidder, he would have bid the reserve price. This uncertainty implies

an entry process whose aggregate outcome is unknown to bidders at the time of bidding.

1Low competition is one of the greatest concerns in auctions. See Bulow and Klemperer (1996).
217% of all sealed-bid auctions in the sample receive just one bid.
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Second, there is reason to suspect an important role for risk aversion. Auction theory says

expected revenue is una�ected by entry-uncertainty if bidders are risk-neutral; it is when

bidders are risk-averse that uncertainty about the number of bidders increases revenue in

�rst-price auctions.3

In describing the entry process, bidders say they �rst look through the published list of

auction items to select the ones they like enough to bid on, and then analyze only those

items in detail to decide how much to bid. The described process is selective - the bidder's

preliminary signal about the item must be high enough to warrant bidding - and values are

�nalized or learned only after incurring some e�ort (an entry cost).

Motivated by the empirical evidence, I analyze an auction model with selective entry,

where bidders' utility functions and value distributions are generalized to allow risk aversion

and asymmetry among bidders. I model both the �rst-price sealed-bid auction and the

English auction, under the independent private values (IPV) paradigm.4 The selective entry

process follows the two-stage model laid out in Marmer, Shneyerov, and Xu (2013) and

Gentry and Li (2014). In stage 1, each potential bidder observes a private signal that is

correlated with his (unknown) value for the item and chooses whether to enter the auction.

Entry incurs an entry cost. In stage 2, the bidders who chose to enter learn their valuations

but not the number of entrants, and submit bids.

In equilibrium, a bidder will enter the auction if his signal exceeds an entry threshold.

Therefore, the bidders that enter are not representative of the entire bidder pool. They are

selected based on a pre-entry signal correlated with value, so they have higher values in

expectation. This is the sense in which entry is selective. The model spans two extremes:

the perfectly selective model of Samuelson (1985), in which signals equal values, and the

nonselective model of Levin and Smith (1994), in which bidders have no signal about value

prior to entry. In particular, it allows for imperfect selection through a joint distribution of

signals and values. I refer to this general model whenever I use the term �selective entry.�

In the bidding stage, the �rst-price sealed-bid auction has a pure-strategy equilibrium in

3See McAfee and McMillan (1987), Matthews (1987), Krishna (2010).
4The IPV assumption is discussed in Section 3.
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which bids are monotonic in values. In the English auction, it is a dominant strategy for

each bidder to bid his value for the item.

After specifying the model, I carefully consider identi�cation of the model from data as

follows. The observable data include all bids and bidder identities in the �rst-price sealed-bid

(S) auction, only the transaction price and winner's identity in the English auction, and (a

measure of) the number of potential bidders. The number of realized entrants in each auction

is observed for S but not for O; this is a common limitation of English auction data. The

auction model is not identi�ed from observed bids alone, in either auction format, absent

some excludable variation in the data that can be exploited. I use variation in the auction

format and variation in the entry threshold to establish nonparametric identi�cation of the

full model. The details are as follows. First, I show that value distributions conditional on

entry - that is, conditional on a bidder's signal exceeding an entry threshold - are identi�ed

for asymmetric bidders from the English auction data. The argument is based on a result

from reliability theory and extends a theorem in Athey and Haile (2002) to cases where the

number of entrants is unobserved. Second, value distributions conditional on point values

of the signal are subsequently identi�ed if there is excludable and continuous variation in

the entry threshold, as discussed previously in Gentry and Li (2014). The entry cost shifter

provides this variation. Third, if the pool of potential bidders is the same for the two auction

formats S and O, a bidder's utility function is identi�ed as the function that satis�es his �rst-

order condition for bidding in S, which maps value distributions identi�ed in the �rst two

steps to bid distributions observed in S. This follows the logic of Lu and Perrigne (2008),

but the distributions here must be conditioned on entry thresholds. Finally, the entry cost is

identi�ed as that which makes the bidder with a marginal signal indi�erent between entering

and not entering the auction.

Closely based on this identi�cation strategy, I develop a multi-step estimation procedure

that recovers the structural parameters of the auction model nonparametrically. The �rst

part is a sieve maximum likelihood estimator that estimates bidders' value distributions from

English auction data. I assess the �nite sample performance of this estimator in a Monte
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Carlo study. The rest of the estimation procedure estimates bidders' utility functions and

entry costs by following the constructive identi�cation argument above step by step.

Finally, I apply the procedure to the New Mexico auction data. According to the estima-

tion results, entry is indeed selective; for a representative auction item, the marginal entrant

(whose pre-entry signal just meets the entry threshold) has a median value that is 40% lower

than that of entrants overall. Bidders are moderately risk-averse, at a level similar to what

has been measured in previous studies of risk aversion. In counterfactual simulations using

the estimated model, I �rst ask how the entry process a�ects current auction revenue. I �nd

that bidders' entry-induced uncertainty about the number of other entrants, combined with

risk aversion, boosts revenue in �rst-price sealed-bid auctions while not a�ecting English

auctions. The boost is largest when the number of realized entrants is low, alleviating the

negative e�ect of low competition. Empirically, the magnitude of this boost is often similar

to that of having one additional entrant. As such, this is a �rst-order consideration for sell-

ers choosing between �rst-price sealed-bid auctions and English auctions in low competition

environments. Second, I compare revenue under selective entry versus nonselective entry

when policies lower the entry threshold, quantifying how much less responsive revenue is to

the entry rate when entry is selective. Finally, I ask the theoretically ambiguous question

of whether expanding the potential bidder pool would increase revenue,5 and �nd that the

e�ect is positive but moderate relative to the size of the expansion.

This paper contributes to the literature by estimating a nonparametric model of selective

entry on empirical data. As a result of this analysis, it demonstrates an economically impor-

tant reason to use �rst-price sealed-bid auctions over English auctions that has not received

attention in the literature to date. The closest related literature can be divided into two

main categories. The �rst category involves testing and identi�cation of selective entry in

auction models. Under risk neutrality, Marmer, Shneyerov, and Xu (2013) propose a test for

di�erent models of entry, while Gentry and Li (2014) prove identi�cation given excludable

variation in the entry threshold. Under risk aversion, Li, Lu, and Zhao (2015) develop a test

5Li and Zheng (2009) show that when entry is endogenous, revenue may or may not increase with the
number of potential bidders.
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for the form of risk aversion by comparing observed entry rates in �rst-price and ascending

auctions for symmetric bidders, while Gentry, Li, and Lu (2015) show identi�cation given

excludable variation in potential bidders and a parametric signal-value copula. These papers

do not perform estimation on empirical data. Incidentally, my paper diverges from Gentry

et al. (2015) in its identi�cation strategy; I exploit variation in the auction format and entry

threshold in place of the conditions they exploit.6 Also, I clarify that the starting point for

Gentry and Li (2014)'s analysis is that value distributions conditional on entry are already

identi�ed. I identify these distributions from English auction data where the number of

entrants and losing bids are unrecorded and bidders are asymmetric.

The other category of closely related work consists of empirical applications that estimate

models of selective entry in a fully parametric approach. Roberts and Sweeting (2013) and

Bhattacharya, Roberts, and Sweeting (2014) examine the merit of di�erent ways to organize

bidders' entry - for instance, unrestricted entry, an entry rights auction, or sequential entry

- when entry is selective.7 Roberts and Sweeting (2016) account for selective entry as they

study how �rm bailouts a�ect revenue in subsequent auctions. In all of these applications,

bidders are modeled as risk-neutral. My paper takes a nonparametric approach with a

generalized model where risk aversion plays an important role. Also, the questions addressed

in my paper are distinct from those asked in this body of work.

The broader related literature includes empirical studies that model bidders entering

nonselectively, as in Levin and Smith (1994). Examples include Bajari and Hortaçsu (2003)

on eBay auctions, Athey, Levin, and Seira (2011) on U.S. Forest Service timber auctions, and

Krasnokutskaya and Seim (2011) on government bid preference programs, for risk-neutral

bidders. My paper also relates to analyses documenting auction behavior consistent with risk

aversion. For instance, Ackerberg, Hirano, and Shahriar (2006) use risk aversion to explain

bidders' propensity to take the buy-it-now option in eBay.

The paper proceeds as follows. Section 2 introduces the NMSLO auctions and presents

6In the NMSLO data, excludable variation in the number of potential bidders is di�cult to measure; see
Section 6.3.

7Sweeting and Bhattacharya (2015) study this question computationally.
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empirical evidence. Section 3 lays out an auction model with selective entry for asymmetric,

risk-averse bidders. Section 4 discusses identi�cation of the structural model from data, and

Section 5 develops an estimation procedure. Section 6 discusses estimation details speci�c

to the NMSLO data along with the estimation results. Section 7 discusses insights gleaned

from counterfactual simulations. Section 8 concludes. The appendix collects all proofs not

presented in the main text.

2 New Mexico's Oil and Gas Lease Auctions

2.1 Overview

The New Mexico State Land O�ce (NMSLO) administers oil and gas leases on its trust

lands. These leases grant the lessee the exclusive right to drill the leased land for a speci�ed

number of years. In return for the lease, the lessee pays the lessor an upfront lump sum

�bonus�, which can be considered the price of the lease, in addition to an annual rental and

royalties on production.8 These leases are sold via monthly auctions where bidders bid on

the amount of the bonus. 80% of the leases auctioned since 2005 are located in the Permian

Basin, a long established oil and gas producing area where the geology is well known. To

avoid excessive heterogeneity in auctions, I focus my study on leases located within the

Permian Basin.

The NMSLO uses both the �rst-price sealed-bid (S) and English or ascending oral (O)

auction in the Permian Basin, generally splitting available land between the two formats.9

It employs a public reserve price of approximately $15.625 per acre. 320 acres (half a square

mile) is by far the most common tract size, and leases have a term of �ve years. The annual

rental is either $0.50 or $1 per acre depending on geographic location. The royalty rate is

8The agency's stated goal is to �optimize revenues while protecting the health of the land for future
generations.� It is responsible for administering 13 million acres of subsurface estate; this is roughly 17% of
the total area of New Mexico.

9The NMSLO uses symbols S and O for �sealed� and �oral� to represent the two types of auctions, so I
use the same. Appendix Table 8 uses production data to check that assignment between the two formats is
fairly random.
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determined by the SLO's assessment of tract potential; tracts deemed �regular� are assigned

a �V0� lease pre�x with 16.67% royalty, and tracts deemed �premium� are assigned a �VB�

lease pre�x with 18.75% royalty.10

Conversations with agency sta� as well as bidders reveal that valuations of a lease are

idiosyncratic by bidder. Firms have di�erent probabilities of drilling the tract within the

�ve-year lease term, which depends on how they see the lease �tting into their overall port-

folio and development strategy.11 They also di�er in well and �eld design, recovery rates,

aggressiveness of hedging programs, cash �ow, and alternative options for land acquisition

to name some examples. All of these things factor into how they value a lease.

The NMSLO records the dollar amount and bidder identity for every bid submitted in the

�rst-price sealed-bid (S) auction. Only the transaction price and winner identity are recorded

for the English (O) auction. Hence, the number of entrants for each lease is observed in the

data for S but not for O. Figure 1 shows that overall, the number of entrants per auction

is not high, with a mean and median of 3 sealed bids. 46% of auctions receive 2 or fewer

bids. SLO sta� say they usually observe about 15 to 20 bidders in the auction room, and

the number of bidder names observed over time is larger, so those who bid on a given lease

are a small fraction of the entire bidder pool.

2.2 Entry and uncertainty about the number of entrants

Figure 2 plots a histogram of the price per acre obtained in auction, separately for each

auction format. One immediately noticeable di�erence between the two formats is that O

has a large concentration at the bottom end of prices, while S does not. Those �rst three

bars in the O histogram consist almost entirely of reserve price sales, where the tract sold

exactly at the reserve price. By nature of the auction format, a reserve-price O sale indicates

that only one bidder raised his hand at the English auction. So the mass at the bottom of

the O histogram is caused by auctions with one entrant.

10Rarely, the NMSLO assigns a �VC� label with 20% royalty. VC leases comprise only 0.2% of the leases
auctioned in the Permian Basin since 2005.

11Drilling is not obligated; it is an option. It is very common for leases to expire without drilling.
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We know from Figure 1 that 17% of S auctions also receive only one bid. So why doesn't

the S histogram have a similar mass at the reserve price? It turns out that in the S auctions,

one-bidder leases sold for on average 8 times the reserve price. Clearly, the lone bidders in

the S auction did not know beforehand that they would be the only bidder. If they had

known for certain, they would have bid the minimum acceptable bid, so these leases would

have sold at the reserve price, just as in the O auction. This demonstrates that bidders

are uncertain about the number of entrants they will compete against. To generate such

uncertainty, there must be an entry process whose aggregate outcome is unknown to bidders

at the time of bidding.

Conversations with bidders reveal that there is a cost to bidding, part of which is the

work required to analyze a tract up for lease.12 There is also an associated opportunity cost;

a �rm may have to forgo bidding on other leases in order to bid on that one. In describing

the timeline of entry, bidders say they �rst look through the published list of auction items to

select the ones they like enough to bid on. This decision is based on things they can discern

from the tract description. Then they do work to analyze only those tracts in detail and

decide how much to bid. This suggests a selective entry process - the bidder's preliminary

signal about the item must be high enough to warrant bidding - and values are �nalized only

after incurring an entry cost as described above.

2.3 Risk aversion

Let n denote the number of entrants in an auction. As seen in the example of one-bidder

auctions, bidders make a sizable adjustment to their S bids in response to uncertainty about

n. There is reason to suspect an important role for risk aversion in these auctions. Theory

(see Krishna (2010)) says that if risk-neutral bidders with independent private values face

uncertainty about n in the S auction, they will bid a weighted average of the optimal bid

under each realization of n. The weightings are such that cases of �overbidding� balance

out cases of �underbidding�, and expected revenue is una�ected by the uncertainty. On the

12Bidders say they analyze S auction and O auction tracts the same way.
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other hand, McAfee and McMillan (1987) and Matthews (1987) show that when bidders are

risk-averse, uncertainty about n does increase expected revenue in the S auction. This makes

intuitive sense; a risk-averse bidder is willing to bid more to reduce the risk of losing when

more bidders turn out than expected. The majority of bidders in the NMSLO auctions are

local independent operators rather than major integrated companies, so risk aversion with

regards to these auctions seems natural.1314

Meanwhile, neither risk aversion nor uncertainty about the number of entrants a�ects

revenue in the O auction, where bidders have a dominant strategy for bidding. Therefore, if

bidders with independent private values are uncertain about the number of entrants and risk-

averse, revenue equivalence does not hold; revenue in S should exceed revenue in O. According

to Table 1, which regresses auction price on auction format and observable characteristics

of the lease, the data aligns with this expectation. This observation is also consistent with

early intuition in natural resource policy that preceded (and did not have the bene�t of)

the auction theory work cited here. Surveying federal and state natural resource auctions

to compare oral and sealed bidding, Mead (1967) remarks that even when a lack of bidder

interest �results in one-bidder sales under sealed bid procedures, such sales may yield a price

close to a competitive price,� and where �competition is unreliable, sealed bidding is the

more appropriate method since it introduces a measure of uncertainty.�

13I manually collected partial data on the employee count at �rms bidding in the Permian Basin in 2005-
2014 from �rm websites, Businessweek, Cortera, Hoovers, Linkedin, Manta, Wikipedia, Yahoo, and other
sources. There were 187 names making sealed bids. Excluding bids from the most frequent bidder which I
discuss in the next section, 38% of sealed bids came from bidders with up to 10 employees, 30% came from
bidders for which I could not �nd employee information, 16% came from bidders with 11-49 employees, and
the remaining 16% came from bidders with 50+ employees.

14It is interesting to note the place of risk aversion in the experimental literature, where bidders are often
found to overbid relative to risk-neutral Nash in �rst-price auction experiments. Risk aversion has long
been considered a candidate explanation for the overbidding (for instance, see Cox et al. (1982), Cox et al.
(1983)). In a more recent paper, Bajari and Hortaçsu (2005) take data from a �rst-price auction experiment
and compare four alternative structural models in their ability to recover bidders' value distributions from
observed bids. They �nd that a risk-averse Bayes-Nash model performs better than both risk-neutral Bayes-
Nash and behavioral models of bidding.
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2.4 Asymmetry among bidders

While there may be many types of asymmetry among bidders who participate in the NMSLO

auctions, the di�erence between the most frequent bidder, called Yates Petroleum, and the

rest of the bidders is particularly striking in this data. The most frequent bidder won nearly

30% of all auctions, while no other bidder's share exceeded single digit percentages. In terms

of entry, the most frequent bidder bid on 80% of all S auctions held since 2005, while the

next highest bid rate was only 21%. As Maskin and Riley (2000a) show, asymmetry among

bidders has implications for auction revenue, with di�erent implications for di�erent auction

formats.

3 Model of auctions with selective entry for asymmetric,

risk-averse bidders

Motivated by the empirical evidence, I build a model of auctions with selective entry, where

bidders are allowed to be risk-averse and asymmetric. I assume independent private values

(IPV). This is not to say common values are not present in the empirical application; as in

most real world auctions, private and common value components likely coexist. I provide

a few comments relating to this modeling assumption. First, the Permian Basin is an area

where knowledge of the geology is more complete due to a long history of development and

production dating back to the 1920s. Permits for new seismic surveys are rarely requested in

the basin, as these are only done in areas that are not well known and much of the basin has

already been drilled in the past. Electric wireline logs from all drilled wells are made public by

the New Mexico Oil Conservation Division.15 Moreover, the data sample covers years 2005-

2014, coinciding with the boom in horizontal drilling and hydraulic fracturing, which also

15Where �seismic testing and geophysical logs+ have revealed the extent of producing zones with high
degrees of certainty, the geologic risk [...] is much lower than that of a Wildcat well.� - Extract from New
Mexico Oil Conservation Division Hearing, Case No. 14744, Jalapeno Corp. and Harvey E. Yates Company's
Proposed Findings of Fact and Conclusions of Law.
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reduce production uncertainty.16 This is important because the key feature of common value

auctions is that I as a bidder think other bidders have value-relevant information - e.g. about

how much oil is underground - that I do not possess. If all bidders have similar assessments

of underlying oil, non-common components are the primary driver of value di�erences, and

that is a private value auction.

Second, under the common values paradigm, it is di�cult to rationalize higher revenue in

S than in O. As shown in Milgrom and Weber (1982) and discussed in Krishna (2010), the O

auction should outperform the S auction in that case, and uncertainty about the number of

entrants should make revenue in S fall even more relative to O due to the linkage principle.

In order to make feasible progress analyzing model features indicated by the major revenue

patterns discussed in Section 2, I stay within the IPV paradigm rather than adopt the fully

general paradigm of both private and common value components.

3.1 Setup

To accommodate the asymmetry discussed in section 2.4, there are 2 subgroups of bidders,

denoted by m ∈ {1, 2}. The number of potential bidders Nm in each subgroup is assumed to

be common knowledge. Each subgroup has potentially di�erent distributions of values and

signals, Fm(v, s), where v are values and s are signals that I describe below. Fm(v|s) is the

distribution of values conditional on a signal. Utility functions and entry costs may also vary

by subgroup. To allow for risk aversion, let Um(·) be the twice continuously di�erentiable

utility function of bidders from subgroup m with Um(0) = 0, U ′m(·) > 0 and U ′′m(·) ≤ 0.

The entry process follows the �Selective Entry model� or �A�liated Signal Model� laid

out in Marmer, Shneyerov, and Xu (2013) and Gentry and Li (2014). In this entry model,

an indivisible good is auctioned via a two-stage auction game. In stage 1, each potential

16�Previously an oil company had to intersect a geologic structure to be successful so the a�ected areas
were very small and the possibility of a dry hole was large. However with these new technologies the oil
companies are now able to drill into the oil bearing source rock so there are no dry holes, and the target area
is now in the form of a blanket (your oil bearing formation) as opposed to a point (a geologic structure).� -
http://www.niobraranews.net.
To quote another person familiar with the industry, �for unconventional, all �rms will have very similar

resource assessments. The oil is there, there's no uncertainty about that in shale. Firms don't even wildcat
in unconventional. The risk is more about, how naturally fractured is the shale, will we hit a fault line, etc.�
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bidder i observes a private signal si of his (unknown) private value vi. The signal si may be

informative about vi, but it need not be perfectly informative. Upon observing this private

signal, all potential bidders simultaneously choose whether to bid on the item, i.e. whether

to enter the auction. Entry incurs an entry cost cm(x), where x are any entry cost shifters.

In stage 2, the bidders who chose to enter in stage 1 learn their valuations v and submit bids

for the object being sold.

This model nests two standard models of entry that lie on opposite ends of a spectrum:

the Levin and Smith (1994) model, in which bidders have no informative signal about their

value prior to entry, and the Samuelson (1985) model, in which bidders know their exact v

prior to entry. Unlike these models, the entry model used here allows for imperfect correlation

between a bidder's pre-entry signal si and his post-entry value vi. Without loss of generality,

�rst-stage signals are normalized to have a uniform marginal distribution on [0,1]: s ∼ U [0, 1].

Assumptions

A1 Independence across bidders: (vi, si) ⊥ (vj, sj) for all j 6= i.

A2 Fm(v, s) have square support [v, v̄]× [0, 1].

A3 Stochastic ordering: s′ ≥ s implies Fm(v|s′) ≤ Fm(v|s).

A4 Fm(v|s) is di�erentiable in s and continuously di�erentiable in v.

A5 The reserve price r is the lower bound of v, i.e. v = r.

Assumptions A1-A4 mostly follow Gentry and Li (2014). Assumption A1 is an implication

of the IPV paradigm; A2 means all values in the support of v have positive density conditional

on any value of s; A3 roughly says bidders with higher signals are likely to have higher values;

and A4 is about di�erentiability and smoothness of the value distribution. Assumption A5

e�ectively attributes all non-bidding to the entry cost. While a more general model would
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encompass non-bidding due to a combination of reserve price and entry cost, it is not clear

how to identify F (r|s) separately from the entry cost without some normalization. In the

context of the NMSLO auctions, the agency considers the reserve price a �starting point�

for serious bidders and tries not to o�er tracts for which the reserve price might be binding.

Thus r is in the vicinity of v for o�ered tracts.

In the remainder of this section I discuss the pure strategy Bayesian Nash equilibrium

for this auction model. For economy of notation, I will omit conditioning on x (entry cost

shifters) and {Nm} (number of potential bidders) in this section. Conceptually, imagine the

case where x and {Nm} are being held constant at speci�c values for clarity.

3.2 First-price sealed-bid auction (S)

Suppose for now that the stage 1 entry decision involves entry thresholds s̄m ∈ [0, 1] such

that a bidder in subgroup m chooses to enter if and only if si ≥ s̄m. Each subgroup may

have a di�erent s̄m. (I write {s̄m} as shorthand notation for {s̄1, s̄2}.) Since s ∼ U [0, 1],

the entry threshold s̄m also represents the probability that a potential bidder from subgroup

m will not enter the auction. Then for bidders from subgroup m, the distribution of values

conditional on entry is

F ∗m(v; s̄m) ≡ 1

1− s̄m

∫ 1

s̄m

Fm(v|t)dt. (1)

By Assumption A2, the support of this distribution remains [v, v̄]. The related density is

denoted f ∗m(v; s̄m). Then the probability that a bidder does not enter or enters and draws

value less than v is s̄m+(1−s̄m)F ∗m(v; s̄m) = s̄m+
∫ 1

s̄m
Fm(v|t)dt. This probability is increasing

in the entry threshold s̄m; namely, its derivative with respect to s̄m is 1− Fm(v|s̄m) > 0.

Equilibrium bidding

First, consider stage 2 of the auction game, in which bidders learn their vi and decide what to

bid. Suppose a monotonic pure-strategy equilibrium is being played, and every competitor

from subgroup m employs a monotonic bidding strategy denoted by bm(v). De�ne
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Gm(b|{s̄m}) ≡ s̄m + (1− s̄m)F ∗m(b−1
m (b); s̄m),

which is the probability that a potential bidder from subgroup m either does not enter or

enters and bids less than b. This object is conditional on the entry thresholds {s̄m}, so all

subsequent functions of Gm are also conditional on {s̄m}. The probability of winning W , for

an entrant from subgroup 1 who bids b ≥ r, is the probability that all competitors either do

not bid or bid less than b, i.e.

W1(b|{s̄m}) ≡ G1(b|{s̄m})N1−1G2(b|{s̄m})N2 .

Note that uncertainty regarding the number of entrants is built into W , as each potential

bidder will not bid with probability s̄m. Now, the expected stage 2 pro�t of a subgroup 1

entrant who draws value vi and bids b ≥ r is

π1(vi, b|{s̄m}) ≡ U1(−c1 + vi − b)W1(b|{s̄m}) + U1(−c1)(1−W1(b|{s̄m})). (2)

To elaborate, in stage 2, the bidder has entered the auction, so he pays the entry cost c

whether or not he wins. If he wins, he gets utility U1(−c1 + vi − b), and if he loses, he gets

U1(−c1).

Then, the bidder's maximization problem in choosing bid b given his value vi is

max
b
π1(vi, b|{s̄m}),

which yields a �rst-order condition for bidding:

U ′1(−c1 + vi − b)
U1(−c1 + vi − b)− U1(−c1)

=
dW1(b|{s̄m})/db
W1(b|{s̄m})

. (3)

Intuitively, the bidder chooses a bid that balances its marginal e�ect on the probability

of winning against its marginal e�ect on utility conditional on winning. In equilibrium,

b = bm(v). Writing out the functionW in terms of value distributions and imposing b = b1(v)
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results in the following di�erential equation for the equilibrium bidding strategy of subgroup

1:

1

b′1(v)
=

[s̄1 + (1− s̄1)F ∗1 (v; s̄1)]

(N1 − 1)(1− s̄1)f ∗1 (v; s̄1)

{
U ′1(−c1 + v − b1(v))

U1(−c1 + v − b1(v))− U1(−c1)

− N2(1− s̄2)f ∗2 (b−1
2 (b1(v)); s̄2)

b′2(b−1
2 (b1(v)))[s̄2 + (1− s̄2)F ∗2 (b−1

2 (b1(v)); s̄2)]

}
.

(4)

Switching the subgroup 1 and 2 subscripts in (4) gives the equivalent di�erential equation

for subgroup 2, forming a system of two �rst order di�erential equations. Lebrun (1999),

Maskin and Riley (2000a), and Maskin and Riley (2000b) among others have derived systems

of di�erential equations characterizing equilibrium bidding with asymmetric bidders. In

general, closed-form solutions cannot be obtained for the bid functions.

A monotone pure-strategy equilibrium exists for this stage 2 bidding game, as can be

shown by relating this game to the framework in Reny and Zamir (2004).17 As for uniqueness,

the equilibrium may not be unique if U1(·) 6= U2(·) or c1 6= c2. In estimation, I will assume

that a single equilibrium is being played in the data. I denote the bidding strategies of the

selected equilibrium with an asterisk, b∗1(v|{s̄m}) and b∗2(v|{s̄m}).

Equilibrium Entry

Now going back to stage 1 of the auction game where potential bidders decide whether to

bid based on their signal s, the expected pro�t from entering the auction for a potential

bidder i from subgroup 1 is

Π1(si|{s̄m}) ≡
∫ v̄

v=v

π1

(
v, b∗1(v|{s̄m})

∣∣∣∣{s̄m})f1(v|si)dv. (5)

This is the expectation of π1(vi, b
∗(vi)) with respect to vi given the signal si. Naturally, a

potential bidder will choose to enter whenever the expected pro�t of entering the auction

17Reny and Zamir (2004)'s model accommodates �rst-price auctions with risk-averse, asymmetric bidders
and a binding reserve price. The stage 2 bidding game here can be reformulated as a �rst-price auction with
a binding reserve price, where bidders draw v < r with probability s̄m and draw v ∼ F ∗m(v; s̄m) otherwise,
so that each bidder does not bid with probability s̄m.
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exceeds the pro�t of not entering; that is, whenever Π1(si|{s̄m}) ≥ U1(0). The utility of not

entering the auction is U1(0) because the entry cost is paid only upon entry.

Taking the derivative of π1(v, b∗1(v|{s̄m})|{s̄m}) with respect to v and using the envelope

theorem shows that π1(v, b∗1(v|{s̄m})|{s̄m}) is strictly increasing in v. In addition, Fm(v|s)

are stochastically ordered in s by the model's assumptions. Therefore, Πm(si|{s̄m}) is strictly

increasing in si, yielding a threshold strategy for entry in which bidders enter the auction if

and only if si exceeds a threshold. This is true for a bidder regardless of the entry strategies

used by other bidders as long as signals are independent across bidders. Hence, all bidders

will indeed use threshold strategies when deciding whether or not to bid in an auction. An

implication of this is that bidders who enter are not representative of the overall bidder

pool; they are the ones with higher signals and therefore stochastically dominant value

distributions, according to assumption A3.

In equilibrium, there is a zero pro�t condition for marginal entrants such that bidders

whose signals are equal to the entry threshold just break even from entering. Using asterisks

to indicate equilibrium entry thresholds, the following system of equations must be satis�ed

in equilibrium:

Π1(s̄∗1|{s̄∗m}) = U1(0)

Π2(s̄∗2|{s̄∗m}) = U2(0).
(6)

3.3 English (ascending oral) auction (O)

Now I model the English (O) auction. I am more concise here since many concepts are

analogous to the S auction and repeated. Suppose the stage 1 entry decision involves entry

thresholds s̄om ∈ [0, 1], where the �o� superscript indicates the O auction. Equation (1) still

applies here, with s̄om replacing s̄m. If only one bidder enters the auction, that bidder wins

and pays the reserve price r.

Equilibrium bidding

First, consider stage 2 of the auction game. Under the private value paradigm, the English
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auction is equivalent to the second price auction. Even with selective entry, risk aversion, and

asymmetry, it is still a dominant strategy for each bidder to bid his value. The probability

of winning W o, for an entrant from subgroup 1 who draws value vi, is the probability that

all competitors either do not enter or enter but have values less than vi:

W o
1 (vi|{s̄om}) ≡ [s̄o1 + (1− s̄o1)F ∗1 (vi; s̄

o
1)]N1−1[s̄o2 + (1− s̄o2)F ∗2 (vi; s̄

o
2)]N2 .

Note that this expression also represents the distribution of the highest competing bid, since

my probability of winning is equal to the probability that max
j 6=i
{vj} < vi. (If no one else

has bid, the highest competing bid is the reserve price r.) The expected stage 2 pro�t of an

entrant from subgroup 1 who draws value vi and bids his value is then

πo1(vi|{s̄om}) = U1(−c1 + vi − r)(s̄o1)N1−1(s̄o2)N2︸ ︷︷ ︸
no other bidders enter

+U1(−c1)(1−W o
1 (vi|{s̄om}))︸ ︷︷ ︸

lose

+

vi∫
y=v

U1(−c1 + vi − y)dW o
1 (y|{s̄om}).︸ ︷︷ ︸

win against other entrants

(7)

In the �rst part of (7), (s̄o1)N1−1(s̄o2)N2 is the probability that no other bidders enter the

auction. In the last part of (7), the integral is the expectation of U1(−c1 + vi − y) with

respect to y, the highest competing bid. In an English auction, the highest competing

bid is the price paid upon winning. πo2(vi|{s̄om}) for a subgroup 2 entrant can be written

by switching the 1 and 2 subscripts in (7). It is easy to see that πom(vi|{s̄om}) is strictly

increasing in vi.

Equilibrium Entry

Now going back to stage 1 of the auction game, the expected pro�t from entering the auction

for a potential bidder from subgroup 1 with signal si is

Πo
1(si|{s̄om}) ≡

∫ v̄

v=v

πo1(vi|{s̄om})f1(vi|si)dv. (8)
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This is the expectation of πo1(vi|{s̄om}) with respect to vi given si. The bidder will choose

to enter whenever the expected pro�t of entering exceeds the pro�t of not entering; that

is, whenever Πo
1(si|{s̄om}) ≥ U1(0). Since πom(vi|{s̄om}) is strictly increasing in vi and Fm(v|s)

is stochastically ordered in s, Πo
m(si|{s̄om}) is strictly increasing in si given independence of

signals across bidders. Hence, bidders will indeed use threshold strategies for entry, entering

if and only if si exceeds a threshold.

In equilibrium, a zero pro�t condition must be satis�ed for marginal entrants:

Πo
1(s̄o∗1 |{s̄o∗m}) = U1(0)

Πo
2(s̄o∗2 |{s̄o∗m}) = U2(0).

(9)

4 Identi�cation

I now investigate whether this auction model is identi�ed from observable data. The goal is

to see whether model primitives Fm(·|·), Um(·), and cm for each subgroup can be recovered

uniquely from the data at hand. For economy of notation, I omit conditioning on entry cost

shifters x and the number of potential bidders {Nm} unless it is necessary.

4.1 Identi�cation of the English (O) auction model

I consider the English auction �rst. The observables here are the transaction price, identity

of the winning bidder, and the number of potential bidders in each subgroup, {Nm}. I refer

to these as the �O data.� Bids other than the transaction price are not observed, nor the

number of entrants. Since it is a dominant strategy for each bidder to bid his value in the

English auction, the observed transaction price is the second highest value among all entrants

unless there is only one entrant. If there is only one entrant, the transaction price equals the

reserve price. Entrants are those whose pre-entry signals exceeded the entry threshold, i.e.

si ≥ s̄om. For the rest of this section, I omit the o superscript that indicates the O auction.

Identi�cation of value distributions
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Athey and Haile (2002), in their Theorems 2 and 3, establish that the value distributions of

asymmetric IPV bidders are identi�ed from transaction prices and winner identities alone

when the number of bidders is known. In doing so they reference a result from Meilijson

(1981) in the reliability theory literature. Can this reasoning be extended to my setting

where the number of entrants is unobserved?

To think about this, I reframe the problem. If I temporarily assign a placeholder trans-

action price of r to auctions with 0 entrants, transaction prices in this auction are obser-

vationally equivalent to the second highest value out of N1 + N2 bidders who draw their

values from distribution Hm(v) ≡ [s̄m + (1− s̄m)F ∗m(v; s̄m)]. The distribution Hm(·) has an

atom at its in�mum representing the probability that a potential bidder does not enter the

auction. Meilijson (1981)'s result need not apply here, because it assumes distributions are

non-atomic. In Proposition 1, I show that a later paper in the reliability theory literature,

Nowik (1990), allows me to extend the reasoning of Athey and Haile (2002) to auctions

where each potential bidder bids with some probability and the realized number of entrants

is unobserved.18

Proposition 1. Hm(v) ≡ [s̄m + (1 − s̄m)F ∗m(v; s̄m)] is identi�ed, and consequently s̄m and

F ∗m(v; s̄m) are identi�ed.

Simple intuition for Nowik (1990)'s whole proof is di�cult to provide, but intuition for

identifying s̄m is as follows. Though the number of entrants is unobserved, we can deduce

when there are no entrants - the item does not sell - and when there is one entrant -

the transaction price equals the reserve price. The empirical probabilities of these events

provide a system of equations that can be solved to identify {s̄m}. Speci�cally, the proof of

Proposition 1 shows that

s̄m =
P(no one enters)

P(winner's subgroup= m& winning bid= r)/Nm + P(no one enters)
.

Now having identi�ed s̄m and F ∗m(v; s̄m), the value distribution conditional on entry, it

18Independently, Komarova (2013) illustrates how an alternative approach to identifying asymmetric
second-price auction models could extend to a stochastic number of bidders.
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remains to identify Fm(v|s), the value distribution conditional on a speci�c value of the sig-

nal. Since F ∗m(v; s̄m) ≡ 1
1−s̄m

∫ 1

s̄m
Fm(v|t)dt, we have Fm(v|s̄m) = − ∂

∂s̄m
[(1 − s̄m)F ∗m(v; s̄m)].

However, taking this derivative is feasible only if there is continuous variation in s̄m and if

the variable causing s̄m to vary leaves Fm(v|s) una�ected. Intuitively, if the entry threshold

increases exogenously from s̄ to s̄ + ε, then the resultant change in value distribution con-

ditional on entry can be attributed entirely to the dropping out of bidders whose pre-entry

signals lie between s̄ and s̄ + ε. As ε → 0, this allows for identi�cation of the distribution

of values conditional on a speci�c signal. On the other hand, if the threshold increase is

endogenous, the resultant change cannot be attributed entirely to those bidders dropping

out, since the value distribution of remaining bidders changes simultaneously. Formally, the

following assumptions allow recovery of Fm(v|s) from F ∗m(v; s̄m).

Assumptions:

A6 Exclusion restriction: Fm(v|s, x) = Fm(v|s) while s̄m(x) depends on x through cm(x)

A7 Continuous variation in s̄: ∀s ∈ [0, 1], ∃x such that s̄m(x) = s

The exclusion restriction A6 enables s̄m(x) to vary via changes in an entry-cost shifter x

while leaving Fm(v|s) una�ected.19 Assumption A7 gives continuous variation of s̄m(x) on

the support of s. These correspond to the identifying assumptions in Gentry and Li (2014).

Other forms of exclusion could work as well, the key being that there be some variation in

s̄ that the target F (·) is invariant to. Rewriting the relationship between F ∗m(v; s̄m) and

Fm(v|s) with explicit conditioning on x gives

F ∗m(v; s̄m(x)) ≡ 1

1− s̄m(x)

∫ 1

s̄m(x)

Fm(v|t)dt.

Rearranging and taking the derivative of both sides with respect to s̄m:

19An entry-cost shifter for the NMSLO auctions is discussed in section 6.2.
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Fm(v|s̄m(x)) = − ∂

∂s̄
[(1− s̄)F ∗m(v; s̄)]

∣∣∣∣
s̄=s̄m(x)

.

Given the assumptions, the right-hand side is calculable for any s̄m. Hence Fm(v|s) is

identi�ed. If s̄m varies continuously over a subset of [0,1], then Fm(v|s) is identi�ed for s in

that subset.

Nonidenti�cation of utility function Um(·) and entry cost cm

The discussion so far establishes that bidders' value distributions are identi�ed from O data.

However, Proposition 2 states that this is not the case for bidders' utility functions and entry

costs.

Proposition 2. Um(·) and cm are not identi�ed from the O data.

While Appendix B provides formal proof, the nonidenti�cation result is intuitive; since

bidders simply bid their value in the O auction, bids do not contain any information on the

form of utility. The equilibrium entry conditions do, but they only provide a single restriction

with which to identify both Um(·) and cm. To summarize, bidders' value distributions are

identi�ed from the English auction data, but utility functions and entry costs are not.

4.2 Identi�cation of the sealed-bid (S) auction model

Next, I consider identi�cation of the �rst-price sealed-bid auction model. The goal is to

identify Fm(·|·), Um(·), and cm from observable data. For the S auction, these include

G(b1...bN1 , bN1+1...bN1+N0) (the joint distribution of bids, using a placeholder for non-bids),

the number of potential bidders by subgroup, {Nm}, and the number of entrants, which I

will denote {nm}. I refer to these as the �S data.�

It helps to rewrite the �rst-order condition for bidding in (3) as an inverse bid function

in the style of Guerre et al. (2000). To do this, I follow the notation of Li et al. (2015) and

de�ne Ũ(x) ≡ U(x−c)−U(−c). Also, de�ne λ(x) ≡ Ũ(x)

Ũ ′(x)
. Note that Ũ(0) = 0 and therefore

λ(0) = 0. Then the �rst-order condition for bidding can be rewritten as
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Ũm(vm − b)
Ũ ′m(vm − b)

= λm(vm − b) =
Wm(b|{s̄m})

dWm(b|{s̄m})/db
. (10)

It is useful to know that λ′(x) = [Ũ ′(x)]2−Ũ ′′(x)Ũ(x)

[Ũ ′(x)]2
= 1− Ũ ′′(x)Ũ(x)

[Ũ ′(x)]2
, where Ũ ′′(x) = U ′′(x−c) ≤ 0

and Ũ(x) > 0 for x > 0. This means λ(x) is strictly increasing for x > 0 and therefore

invertible if x is restricted to [0,∞). Since v − b ≥ 0, I can use the inverse of λ(·) to de�ne

an inverse bid function. Namely, each bidder's private value can be expressed in terms of

the corresponding bid b, an observed distribution W , and the function λ−1(·):

vm = b+ λ−1
m (

Wm(b|{s̄m})
dWm(b|{s̄m})/db

) ≡ ξm(b). (11)

If λ(·) were known - as would be the case if bidders were risk neutral - we could compute ξm(b)

for any observed bid b, and this would at least identify the distribution of vm conditional on

entry, F ∗m(v; s̄m).20 However, λ(·) is unknown here.

Proposition 3. [Fm(·|·), Um(·), cm] are not identi�ed from the S data without further as-

sumptions.

While Appendix B provides formal proof, intuition for non-identi�cation is as follows. There

are two functions - the utility function and the value distribution - to be identi�ed, but

there is only one observable function - the bid distribution - available for use when trying

to recover these objects. In general, there would be multiple pairs of utility functions and

value distributions, along with an entry cost, that can rationalize the data. This relates to

the nonidenti�cation result in Guerre et al. (2009), which states that the �rst-price auction

model with risk-averse bidders is not identi�ed from the observed distribution of bids.

Remark 1. In the symmetric bidders case, the structure is nonparametrically identi�ed if

the same entry threshold s̄ is observed for two di�erent values of exogenous N (number of

potential bidders) in the data. Alternatively, Gentry et al. (2015) show that the model can

be identi�ed with a parametric restriction on the copula describing the joint distribution of

s and v, if there is exogenous variation in the number of potential bidders.

20See Guerre et al. (2000).
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Despite non-identi�cation of the model, the entry threshold s̄m is directly identi�ed. The

number of entrants nm has a binomial distribution with probability of entry (1 − s̄m), so

E[nm] = Nm(1− s̄m), and hence s̄m = 1− E[nm]/Nm.

4.3 Identi�cation using both the O and S auction

To summarize, the IPV auction model with selective entry, risk aversion, and asymmetric

bidders is not identi�ed from either the English (O) or �rst-price sealed-bid (S) auction

alone absent additional conditions beyond A1-A7. However, if the O auction and S auction

share the same pool of potential bidders, and thus the same Fm(v|s) and Um(·), we may be

able to gain identifying power by using data from both auction formats simultaneously.21

Intuitively, value distributions would be identi�ed from O data as explained in section 4.1;

then taking these as given, utility functions (or to be precise, λ(·)) would be identi�ed from S

auction bids as the function that satis�es the �rst-order condition for bidding in (11); �nally,

entry costs for each auction format would be identi�ed from the respective equilibrium entry

conditions (6) and (9). The next proposition con�rms this idea.

Proposition 4. If the O auction and S auction share the same Fm(·|·) and Um(·), then the

model primitives for both of these auctions are identi�ed nonparametrically from observable

data given A1-A7. The entry cost cm need not be the same between O and S.

This proposition provides a basis for estimating the full auction model, which is the topic of

the next section.22

21I discuss whether this condition applies to the NMSLO data at the beginning of Section 6.
22I leave for future research the question of how to incorporate unobserved heterogeneity when value dis-

tributions are identi�ed from English auctions where only transaction prices are observed. Krasnokutskaya
(2011) and Hu et al. (2013) are well known papers that study identi�cation of auction models with unob-
served heterogeneity. However, methods like these require at least two bids per auction item to deconvolute
unobserved heterogeneity while estimating the value distribution.

24



5 Estimation

I develop an estimation procedure that recovers Fm(·|·), Um(·), and cm from the O and S

data. The multi-step procedure closely follows the nonparametric identi�cation argument

presented in the proof of Proposition 4. It can be summarized in the following four steps.

First, I estimate the entry threshold as the observed probability that a potential bidder does

not enter the auction. Second, I estimate conditional value distributions from O data using

a sieve maximum likelihood estimator. This estimator maximizes the likelihood of observed

auction prices and winners, approximating value distributions with Bernstein polynomials.

Third, using value distributions as estimated in the second step and observed distributions

of sealed bids, I estimate the nonparametric utility function that satis�es the �rst-order

condition for bidding in S. Finally, I estimate the entry cost that makes the bidder with a

marginal signal indi�erent between entering and not entering the auction. As I describe the

estimation procedure, I introduce notation for auction covariates z, which are characteristics

that describe the auction item. Signals are normalized so that s|z ∼ U [0, 1].

5.1 Estimation of entry thresholds {s̄m}

As an intermediate step to recovering model primitives Fm(·|·), Um(·), and cm, I need to know

the selective entry threshold s̄m. Given {Nm}, s̄m is a function of entry cost cm and auction

covariates z. Since cm itself is a function of z and entry-cost shifter x, s̄m(z, {cm}) can be

expressed as s̄m(z, x). Since s ∼ U [0, 1], the entry threshold is equal to the probability that

a potential bidder does not enter the auction.

In the �rst-price sealed-bid (S) auctions, the number of entrants nm is observed. So

s̄m(z, x) = 1− E[nm|z, x]

Nm

,

where E[nm|z, x] can be estimated nonparametrically. If (z, x) are large vectors such that

nonparametric estimation is impractical, one could use parametric methods as well. For

instance, one could estimate a binomial logistic regression with nm ∼ B(Nm,
1

1+e−βX
), where
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B(·, ·) is the binomial distribution and X is a vector of z and x. Then E[nm|z, x] is the value

of nm predicted by that estimation given z, x.

In the English (O) auctions, the number of entrants nm is not observed as only winning

bids are known. However, s̄m(z, x) can still be computed for each z, x using

s̄m =
P(no one enters)

P(winner's subgroup= m& winning bid= r)/Nm + P(no one enters)

as shown in the proof of Proposition 1. Nonparametric or parametric methods could be used

to estimate these probabilities as a function of z and x. Let ˆ̄sm denote the estimated entry

threshold.

5.2 Estimation of value distributions Fm(v|s, z) from O data

The task of estimating Fm(v|s, z) is demanding on the data. Recall that not all bids, but

only transaction prices, are observed for the O auction. Furthermore, each subgroup has

its own distribution, and the distributions are conditional on both signals s and covariates

z. Finally, we do not observe the private signals s; all we know is that si ≥ s̄m for each

entrant. I propose a sieve maximum likelihood estimator using Bernstein polynomial bases

to perform this task. Properties of sieve estimators, including sieve maximum likelihood, are

discussed in Chen (2007).23

In the O data, we see for each item k = 1, ..., K the transaction price (the second highest

v among entrants) and the identity of the winning bidder. So the log likelihood of the

observed data is the log likelihood of observed transaction prices p and winner's subgroups

m conditional on entry thresholds {s̄m} and auction covariates z.24 Namely,

K∑
k=1

log(P(2nd highest v among entrants = pk & winner's subgroup = mk|{s̄m}k, zk)). (12)

23Komarova (2017) is an example of using Bernstein polynomials for sieve estimation of distribution
functions in an ascending auction framework.

24The transaction price is a continuous variable, so one should think of
P(2nd highest v among entrants = p) as a density.
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The idea is to estimate Fm(v|s, z) by �nding the conditional distribution of v that maximizes

this log likelihood. This is conceptually straight forward, but we do not observe s and only

know that si ≥ s̄m for each bid. The log likelihood is a more complex function of Fm(v|s, z)

than it would be if s were known.

Before writing the mathematical expression for (12), some notation is useful. LetHm(p; s̄m, z)

be the probability that a bidder either does not bid (si ∈ [0, s̄m)) or does bid (si ∈

[s̄m, 1]) with v ≤ p, when his entry threshold is s̄m and auction covariates are z. That is,

Hm(p; s̄m, z) ≡ s̄m+
∫ 1

s̄m
Fm(p|s, z)ds. Also de�ne the derivative hm(p; s̄m, z) ≡ ∂Hm(p; s̄m, z)/∂p.

Now if we let Hm and hm be shorthand for Hm(p; s̄m, z) and hm(p; s̄m, z), respectively, the

likelihood of observing transaction price p ∈ (r, v̄] and a winning bidder from subgroup 1 is

N1(1−H1)[(N1 − 1)h1H
N1−2
1 HN2

2 +N2h2H
N1−1
1 HN2−1

2 ]. (13)

This is the probability that the second highest value among entrants is p and the winner is

from subgroup 1 when there are {Nm} potential bidders who each �draw� their value from

{Hm(·; s̄m, z)}, which has built in the fact that each potential bidder from subgroup m has

probability s̄m of not bidding.25

Now, to use sieve estimation, Fm(v|s, z) is approximated using a multivariate Bernstein

polynomial after normalizing v, s, z to have support in [0, 1], the domain of Bernstein poly-

nomials.26 For example, if z is a scalar,

25For completeness, the probability of an observation where no one bids is s̄N1
1 s̄N2

2 , and the probability

that the lease sells at the reserve price to a bidder from group m is Nm(1− s̄m)s̄Nm−1
m s̄

N−m

−m . But since both
of these probabilities only depend on {s̄m}, which are already estimated and do not depend on the object
of estimation Fm(·|s, z), including or excluding these observations from the maximum likelihood estimator
makes no di�erence in the result.

26These normalized values are only used inside the Bernstein polynomial; when performing all other
calculations, true values are used.
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F (v|s, z) = Bm,n,l(v, s, z)

≡
∑m

p=0

∑n
q=0

∑l
r=0 αp,q,r

 m

p

 vp(1− v)m−p

 n

q

 sq(1− s)n−q
 l

r

 zr(1− z)l−r.

This approximation imposes a restriction that F (v|s, z) be continuous not just in v but also

in s and z. The polynomial degrees m,n, l, which are analogous to the bandwidths in kernel

estimation, can be chosen to minimize a relevant criterion.27

Now the likelihood in (13) can be expressed in terms of polynomial B(·, ·, ·) by replacing

Hm with ˆ̄sm+
∫ 1

ˆ̄sm
B(p, s, z)ds and hm with

∫ 1
ˆ̄sm

∂B(p,s,z)
∂p

ds. Finally, Fm(v|s, z) can be estimated

by �nding the parameters αp,q,r that maximize the log likelihood in (12). A bene�t of

using Bernstein polynomials is that they are easy to restrict to satisfy required properties

of Fm(v|s, z). Speci�cally, since Fm(v|s, z) is a cdf, B(v, s, z) should be weakly increasing in

v, which means αp,q,r ≤ αp′,q,r if p < p′. Test simulations of the estimator are discussed in

Appendix B.

5.3 Estimation of utility functions and entry costs

For ease of notation in this section, consider a �xed z and x. I now construct the utility func-

tion that satis�es the �rst-order condition for bidding, nonparametrically. Let Jm(b|{s̄m})

be the distribution of submitted sealed bids conditional on entry thresholds {s̄m}, and let

α indicate quantiles. Since bid functions are monotonic, a bidder whose value equals the

α-quantile of values conditional on entry (F ∗−1
m (α; s̄m)) will bid an amount equal to the α-

quantile of bids conditional on entry (J−1
m (α|{s̄m})). Then the �rst-order condition as stated

in (10) can be rewritten in the following form that is useful for estimation of λ(·):

λm(F ∗−1
m (α; s̄m)− J−1

m (α|{s̄m})) =
Wm(J−1

m (α|{s̄m})|{s̄m})
dWm(J−1

m (α|{s̄m})|{s̄m})/db
.

27The criterion used when analyzing the NMSLO data is discussed in Appendix B.
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The estimator in section 5.2 yields F̂ ∗m(·; s̄m), the estimated value distribution conditional

on entry. Then in order to construct λm(·), it remains to estimate the equation's other

components, Jm(·|{s̄m}) and Wm(·|{s̄m}).

Submitted sealed bids are directly observed in the data. Meanwhile, Wm(b|{s̄m}) is the

probability of winning when an entrant from subgroup m bids b in the S auction, condi-

tional on {s̄m}. This is equivalent to the distribution of the highest competing bid facing

a subgroup-m bidder, which is also observed in the data. So Jm(b|{s̄m}) and Wm(b|{s̄m})

are conditional distributions of variables that are directly observed in the data. Methods for

estimating such objects are well known. I take a nonparametric approach, using bivariate

Bernstein polynomials to approximate these conditional distributions.

Having thus estimated F̂ ∗m(·; ·), Ĵm(·|·), and Ŵm(·|·), I use the �rst-order condition above

to construct λ̂m(·) as the function that maps F̂ ∗−1
m (α; s̄m) − Ĵ−1

m (α|{s̄m}) to the right-hand

side expression, for every quantile α.

Then, since λ(x) ≡ Ũ(x)

Ũ ′(x)
, I can compute Ũ(y) = exp

∫ y
1

1/λ̂(t)dt; this computes Ũ(·) to

scale, with the scale normalization Ũ(1) = 1. Other normalizations can be chosen as well;

the scale is easily adjustable. Now, the expected stage 2 pro�t in (2) can be rewritten in

terms of Ũ(·) as πm(vi, b) ≡ Ũm(vi − b)Wm(b) + Um(−cm). Then the expected pro�t from

entering the auction in (5) can be rewritten as

Πm(si) ≡
∫ v̄

v=v

Ũm(v − b∗(v))Wm(b∗(v))fm(v|si)dv + Um(−cm).

Then from equilibrium entry condition (6) and the location normalization U(0) = 0,

Um(−cm) = −
∫ v̄

v=v

Ũm(v − b∗(v))Wm(b∗(v))fm(v|s̄m)dv.

All the objects needed to compute the right hand side have been estimated, so this provides

a value for Um(−cm). Now, by de�nition, Ũm(cm) = Um(cm− cm)−Um(−cm) = −Um(−cm).

Hence, cm = Ũ−1
m (−Um(−cm)). The right-hand side of this is known, providing an estimate

of cm, the entry cost in the S auction.28 Finally, by de�nition of Ũ(·), Um(w) = Ũm(w +

28cm(z, x) can be computed for any z, x by performing this computation for those values of z, x.
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cm) + Um(−cm).

The entry cost in the O auction can be estimated by similarly solving for com using

equilibrium entry condition (9), plugging in the estimated F̂m(·|·), Ûm(·), and ˆ̄som. This

completes the estimation of Fm(·|·), Um(·), and cm.

6 Estimation using NM auction data

In this section, I discuss estimation details and results that are speci�c to the NMSLO

auction data. First, I check whether the pool of potential bidders is the same in the �rst-

price sealed-bid (S) and English (O) auctions by comparing all bidder names observed in S

to all winner names observed in O.29 In auctions of Permian Basin leases in 2005-2014, 97%

of S bids came from bidders that had also won in the O auctions, and 98% of bidders that

won in the O auctions had also bid in the S auctions. The top 5 bidder names by number

of wins are the same for both auction formats and in the same order. I conclude that the

bidder pools underlying the two auction formats are mostly overlapping if not the same.

Next, I specify the estimation sample. The most common tract size is 320 acres, and

acreage determines the reserve price. Since restricting my estimation to 320-acre tracts

allows me to homogenize size and reserve price while still keeping the majority of data, I do

so. I also drop outlier dates in which the supply of Permian Basin acreage is abnormally high

or low, meaning greater than 15,000 acres or less than 5,000 acres where the SLO's target is

10,000 acres. This leads to dropping 8 out of 120 auction dates. As a result, the sample I use

for estimation are all auctions of 320-acre leases in the Permian Basin in 2005-2014 on dates

when Permian acreage stays between the bounds mentioned. There are 1059 S auctions and

935 O auctions in this sample.

I also de�ne the subgroups of bidders. Following the discussion in section 2.4, I categorize

the most frequent bidder (Yates) as the sole member of subgroup 2 and all other bidders as

subgroup 1.

29Since only winners are observed in O.
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6.1 Covariates z

With many covariates or lease characteristics z, nonparametric estimators can su�er from

the curse of dimensionality, meaning there is not enough data to condition estimates on

every combination of covariate values. In order to overcome this problem, I take a single

index approach, in which the value distribution and entry cost depend on the vector z only

through a scalar index z′β, i.e. Fm(v|s, z) = Fm(v|s, z′β) and cm(z, x) = cm(z′β, x). Since the

entry threshold s̄m(z, x) is determined by Fm(v|s, z′β) and the entry cost cm(z′β, x) through

(6), it follows that s̄m(z, x) = s̄m(z′β, x). Furthermore, since sealed bids are determined by

Fm(v|s, z′β), cm(z′β, x), and s̄m(z′β, x) through the �rst-order condition in (3), it follows

that sealed bids are also dependent on z only through z′β. I estimate β by regressing the

log of submitted sealed bids on observable lease characteristics z. Table 2 lists the lease

characteristics considered. The ones marked with an asterisk are ultimately used to form

the index z′β. Appendix B provides the rationale for this choice, a detailed explanation of

the covariates, and results of regressing the log of submitted sealed bids on these covariates.

6.2 Choice of entry cost shifter x

Notation x refers to a variable that shifts the entry cost cm(z, x), and therefore the entry

threshold, without a�ecting Fm(v|s, z). In the NMSLO auction data, the amount of land

o�ered for auction outside the Permian Basin is a candidate for x. Recall that 80% of leases

auctioned by the NMSLO since 2005 are located in the Permian Basin. Of the remaining

20%, three fourths are in exploratory or �frontier� areas that have historically seen little to

no drilling, and one fourth are in other established basins such as the San Juan basin.30

Figure 3 shows the variation in acreage o�ered over time, excluding dates that have been

dropped as described earlier. Unlike Permian Basin acreage, which the agency explicitly

aims to keep at around 10,000 acres each month, acreage o�ered from frontier areas varies

considerably from month to month, ranging from 0 to 32000 acres, as the agency does not

30The San Juan basin is located in the northwest corner of the state, as opposed to the Permian Basin in
the southeast corner.
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set a target. Frontier acreage on a given date is determined by the agency's capacity to

review and approve land nominations prior to auction.

Bidders say that when there is a lot of acreage being auctioned on a single date, they

have to ��lter down to the ones they can spend more time analyzing.� This suggests that the

number of tracts a �rm can analyze each month is �nite, and bidders raise the bar on which

tracts merit bidding as acreage o�ered increases. So variation in non-Permian acreage may

be an entry cost shifter in this data. To explore this idea, regressions in Table 3 measure

the relationship between acreage outside the Permian Basin and the number and size of

submitted sealed bids inside the Permian Basin, controlling for covariates including oil and

gas prices and year �xed e�ects.

In columns (1) and (2), the e�ect of non-Permian acreage on the number of bids submitted

on each lease inside the Permian Basin is signi�cant and negative, supporting the anecdotal

evidence that it causes entry costs to increase and entry to decrease. Meanwhile, we may be

concerned that increases in non-Permian supply also negatively a�ect bidders' values. While

the exogeneity of this instrument cannot be tested, it is encouraging that columns (3) and

(4) do not detect a negative e�ect of non-Permian supply on the level of bids (in log de�ated

dollars), controlling for the number of bids submitted. It seems plausible that non-Permian

supply a�ects the entry threshold for but not the value of a Permian tract.

6.3 Data limitations

Number of potential bidders

While I observe the identities of all bidders in the S auction and all winners in the O auction

for every auction, the number of potential bidders is not directly observed. The list of leases

to be auctioned and their descriptions are published online for free, and there is no process

for registering interest for a particular lease or auction date prior to bidding. One intuitive

if imperfect measure of potential bidders for a Permian Basin lease is the number of unique

bidder names Ñ observed in Permian Basin auctions that month. This is analogous to the

approach used to measure potential bidders in Athey et al. (2011) and Li and Zheng (2012)
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among others. As the number of leases auctioned each month grows large, Ñ would converge

to N . However, in this data the number of leases auctioned each month is not large enough

to avoid an undesirable feature of Ñ : even if the true N is �xed, variation in the quantity

of auction items generates substantial variation in observed Ñ . When each potential bidder

enters with some probability, by construction the number of unique bidder names observed

in the data increases with the number of leases auctioned.

With this in mind, I choose to model N1 as constant in my sample and measure it as the

maximum Ñ1 over all auction dates, which is 23. This is in line with sta� remarks that there

are usually 15-20 bidders present in the room on auction day, of which 2-3 typically bid on a

given lease. Estimation results are quite robust to alternate choices of the constant value of

N1 since the entry threshold s̄1 scales accordingly such that the expected number of entrants,

N1(1− s̄1), matches the data. For instance, the binomial distribution with (N, p) = (10, 0.2)

is in practice not very di�erent from the binomial distribution with (N, p) = (20, 0.1).31

While it may be inaccurate to assume that N1 is constant, letting N1 vary as Ñ is likely to

introduce more serious bias given how Ñ is measured. Meanwhile, since there is only one

�rm in subgroup 2, N2 = 1.

Entry thresholds for the English (O) auction

As shown in Proposition 1, s̄m(z, x) for the O auctions satis�es

s̄m(z, x) =
P(no one enters|z, x)

P(winner's subgroup=m & winning bid=r|z, x)/Nm + P(no one enters|z, x)
.

Computing this expression requires that the probability of no entrants and probability of

reserve price sales to each subgroup be estimated conditional on z and x. In this data,

auctions with zero entrants and reserve price sales certainly occur, but they do not occur

frequently enough to allow the estimation of their probability conditional on z and x. 103

out of 120 auction dates have gone by without a single lease being unsold in the O auction

31Plotting the two distributions con�rms this visually.
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sample.

In Table 4, I use matched leases to compare entry in the S and O auctions. Each S lease

was matched to an O lease located in the same section32 and auctioned on the same day;

unmatched leases are not included in the Table. The number of entrants is not recorded in

the O auction, but I know when there are no entrants (the lease goes unsold) and when there

is one entrant (the lease sells at the reserve price). I count the occurrence of each of these

events in the O auction and compare to the counts in S. A signi�cant di�erence in entry

would manifest itself in these numbers; if entry rates are higher, zero-bidder and one-bidder

events will be less frequent.

Overall entry rates appear similar in S and O auctions of comparable tracts. Due to

the data limitations described above, I use the s̄m(z, x) computed from S data as the entry

threshold for both auction types. Post-estimation, I can subject the assumption of similar

thresholds to a test by computing the expected pro�t from entering the O auction for a

marginal entrant using the entry threshold estimated from S data. According to the equi-

librium entry conditions in (9), the expected pro�t should be zero for a marginal entrant at

the true equilibrium threshold. If S entry thresholds well approximate O entry thresholds,

the test computation described should yield a value close to zero.33

6.4 Other modelling choices and estimation details

Since Yates, the bidder in subgroup 2, is not very selective in bidding (it bid in 84% of all

S auctions of 320-acre Permian Basin leases in 2005-2014), I model subgroup 2 as entering

nonselectively with probability 0.84 to reduce the burden on the estimator. This way, the

value distribution to be estimated for subgroup 2 is not conditional on the signal s. The

entry model for subgroup 1 is still fully endogenous and selective. In other words, the value

distributions to be estimated are F1(v|s, z′β) and F2(v|z′β).

32A one square-mile area.
33I compute this post estimation and �nd that for a typical tract (i.e. a tract with modal z′β and x),

the expected pro�t for a marginal entrant in O is roughly $160. Locally, Πo
1(s̄o∗1 |{s̄o∗m}) (see (9)) changes by

about that much for every 0.001 change in s̄o∗1 . This means the s̄1 computed from S data is very close to
(within about 0.001 of) the s̄o∗1 that satis�es Πo

1(s̄o∗1 |{s̄o∗m}) = 0.
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Following the discussion in section 5.1, the S entry threshold for subgroup 1 is s̄1(z′β, x) =

1 − E[n1|z′β,x]
N1

. I estimate E[n1|z′β, x], the expected number of entrants conditional on z′β

and x, parametrically using a binomial logistic regression where

n1 ∼ B
(
N1,

1

1 + e−(γ0+γ1x+γ2z′β+γ3(z′β)2+γ4(z′β)3)

)
. (14)

B(·, ·) stands for the binomial distribution. Squared and cubed terms of z′β are included to

allow for �exible forms of the relationship between z′β and s̄1. The results of that estimation

are displayed in Appendix B Table 12.

When it comes to estimating the utility function Um(·), any observed values of z′β and

x can be used to perform the estimation procedure described in section 5.3 since Um(·) is

independent of z and x. Since estimates of F ∗m(v; s̄1|z′β) and Jm(b|s̄1, z
′β) are likely to be

most precise where the data is dense, I use F̂ ∗m(v; s̄1|z′β) and Ĵm(b|s̄1, z
′β) at modal z′β and

x to estimate Um(·).

6.5 Estimation results

The estimated value distributions are depicted in Figure 4. Recall from section 4.1 that

F1(v|s, z′β) is identi�ed for the signals s that fall in the range of entry thresholds s̄1(z′β, x)

available in the data. At modal z′β, this range is roughly [0.922, 0.944] given (14) and the

range of variation in the entry cost shifter x. It spans a 40% change in the probability of entry

for each potential bidder from 0.056 to 0.078. In Figure 4, the left panel depicts F̂1(v|s, z′β)

for signals s at the bottom and top of this identi�ed range, along with F̂2(v|z′β), at modal

z′β. Comparing subgroup 1 and subgroup 2, there does not seem to be a clear dominance

relation of one over the other, but subgroup 2 has a higher median value. Meanwhile, the

right panel zooms in to show that higher signals are associated with stochastically dominant

value distributions. This dominance was not imposed in estimation and is consistent with

selective entry. When the entry threshold is 0.922, the marginal entrant has a median value

that is 40% lower than that of entrants overall. When the entry threshold rises, these

marginal entrants will be the �rst to exit, and the value distribution of remaining entrants
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will stochastically dominate those of the exiters/non-entrants. Going forward, I use estimates

imposing stochastic dominance to avoid any crossing in the tails where data is sparse.

Figure 5 depicts the estimated nonparametric utility functions of the two subgroups.

Both functions seem to display some risk aversion, corroborating the discussion in section

2.3. Subgroup 1 bidders appear more risk-averse than subgroup 2. To learn the form of

risk aversion that these utility functions entail, I �t the Hyperbolic Absolute Risk Aversion

(HARA) utility form to Ûm(·). HARA utility, under the condition U(0) = 0, is

U(x) = κ
1− α
α

[(
x

1− α
+ β

)α
− βα

]
and includes risk neutrality, constant absolute risk aversion (CARA), constant relative risk

aversion (CRRA), DARA, DRRA, IARA, and IRRA as special cases. Table 5 displays the

�tted HARA parameters.

The coe�cient α̂ < 1 indicates DARA for both utility functions. This is reassuring since

DARA is considered more empirically plausible than IARA. The coe�cient β̂ > 0 indicates

IRRA for Û1(·), while β̂ = 0 indicates CRRA for Û2(·). κ is just a constant multiple that

scales the HARA �t to match the estimated utility functions. Meanwhile, I also �t the

CRRA utility function to Û1(·) and Û2(·) to compare the extent of risk aversion here with

estimates in the literature. This yields CRRA parameters of 0.48 and 0.23, respectively.

As a comparison, Holt and Laury (2002) measure CRRA parameters centered around the

0.3-0.5 range in laboratory experiments, and Lu and Perrigne (2008) measure roughly 0.59

for the USFS timber auctions.34

As for the estimated entry cost, ĉ1(z′β, x) is roughly $11,000 at modal z′β with no non-

Permian acreage (x = 0). This is the minimum expected pro�t below which a �rm will not

bother analyzing a tract, as the opportunity cost of doing so is larger than the expected pro�t.

For sake of comparison, the median S auction bid for a 320-acre lease is roughly $39,500 in

this data, and the mean bid is $101,100. When the entry-cost shifter x increases to 30,000

acres (roughly the maximum observed in the data), the estimated entry cost increases to

34A CRRA parameter of 0 indicates risk neutrality, while 1 indicates log utility.
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$28,000.

7 Counterfactual simulations

I use the estimated value distributions, utility functions, and entry costs to perform coun-

terfactual simulations answering the following questions. First, I ask how the entry process

a�ects current revenue. Second, I quantify the di�erence selective entry makes (versus non-

selective entry) in determining the revenue e�ect of policies lowering the entry threshold.

Finally, I assess the e�ectiveness of policies that intend to improve competition by expand-

ing the potential-bidder pool. The method used to simulate counterfactual S bid functions

is described in Appendix B.

7.1 Entry-induced uncertainty and risk aversion

Fixing lease quality z′β and the entry-cost shifter x at modal values, I simulate auction

revenue under alternative auction models to learn the implications of the model studied

here. As a reference, Figure 6 shows the simulated probability distribution of the number of

entrants n. Most auctions have 1-4 entrants, and close to half of all auctions have 2 or fewer

entrants; this is a low competition environment. Figure 7 then shows simulated auction

revenue, broken out by the realized number of entrants n. The dark blue bars simulate the

English (O) auction; the green bars simulate the �rst-price sealed-bid (S) auction as most

commonly modeled, where risk-neutral bidders know n when they bid; and �nally, the yellow

bars simulate the S auction model postulated in this paper, where risk-averse bidders do not

know n when they bid.35 The red dotted line marks the value of the item to the median

bidder conditional on entry.

The dark blue and green bars con�rm that a low number of entrants is very damaging

to auction revenue; cases with just one entrant are particularly devastating. In light of

this, the yellow bars are intriguing. In the case of 1-3 entrants, the yellow bars display a

35The dark blue bars and green bars need not be the same because bidders are asymmetric; revenue
equivalence does not apply.
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large revenue boost similar in size to having one additional entrant in the green bars. Even

when there is just one entrant, revenue comes close to the red line, consistent with evidence

discussed in section 2.2. Meanwhile at very high realizations of n, the yellow bars eventually

become lower than the green bars, but the di�erence is quite small because risk aversion

lifts S bids across the board. In total, Figure 7 paints a picture in which entry-induced

uncertainty combined with risk aversion provides meaningful protection against the e�ects

of low competition. This protection applies to the S auction but not to the O auction, where

bidders have a dominant strategy for bidding una�ected by the number of entrants or risk

aversion. Therefore, there is good reason to favor �rst-price sealed-bid auctions over English

auctions in low competition environments, even absent traditional concerns like collusion.

The overall simulated di�erence in log revenue between the dark blue (O) and yellow

bars, accounting for the probability distribution of n as shown in Figure 6, is 0.36. This is

consistent with the revenue pattern seen in Table 1. If expected prices are higher in the S

auction as they are here, does this imply entry rates should be lower? It turns out this is not

the case. The expected pro�t from entry - and hence the entry rate - is determined not only by

the auction price but also the probability of winning and, for risk-averse bidders, uncertainty

regarding the price. Simulations show that subgroup 1 bidders have a higher probability of

winning in S than in O, conditional on the same value.36 An increased probability of winning

makes up for a more than proportionate reduction in price-value margins when bidders are

risk-averse. Also, the price paid upon winning is naturally unpredictable in O, while it is

known with certainty in S to be one's own bid. On balance, available evidence (Table 4) and

computational checks37 point to similar entry rates for S and O in this data.38

36This is akin to winning patterns observed for small bidders (loggers) against large bidders (mills) in
Athey et al. (2011).

37I compute the expected pro�t from entering the O auction for a marginal entrant using the entry threshold
estimated from S data, and con�rm this is close to zero. That is, for a typical tract (i.e. a tract with modal
z′β and x), the expected pro�t for a marginal entrant in O is roughly $160. Locally, Πo

1(s̄o∗1 |{s̄o∗m}) (see (9))
changes by about that much for every 0.001 change in s̄o∗1 . This means the s̄1 computed from S data is very
close to (within about 0.001 of) the s̄o∗1 that satis�es Πo

1(s̄o∗1 |{s̄o∗m}) = 0.
38Li et al. (2015) show that if bidders are symmetric and risk aversion takes the form of DARA, CARA,

or IARA, DARA leads to higher entry rates in O, CARA leads to equal entry rates, and IARA leads to
higher entry rates in S. When bidders are asymmetric this need not apply, one reason being that winning
probabilities di�er between formats as discussed above.
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Finally, the empirical evidence here demonstrate in magnitude how important entry and

risk aversion can be in determining revenue, but I qualify that this magnitude will naturally

di�er from setting to setting. Also, it seems at least theoretically possible that if auction

prices are higher in S than in O, the entry rates in S could fall so much that revenue ends up

being lower. So the revenue ranking is not absolute, though Li et al. (2015) comment that

they were unable to �nd theoretical examples yielding lower revenue in S given symmetric,

risk-averse bidders and selective entry.

7.2 Revenue response to changes in the entry threshold

Low numbers of entrants are often a concern in government auctions generally. In response,

governments may pursue policies that try to increase the entry rate, or lower the entry

threshold.39 I quantify the revenue response under selective entry versus nonselective entry

when such a policy is pursued. Taking s̄1 = 0.943 as a starting point, I simulate the O

revenue change when s̄1 falls to 0.922 in Table 6.40 Under nonselective entry, a lower entry

threshold means more entrants that are just like existing entrants, which would lead to a 34%

increase in revenue. However, revenue under selective entry is not as sensitive to the entry

threshold, because a lower entry threshold means gaining entrants that are stochastically

dominated by existing entrants in value. The selective entry model predicts a 27% revenue

increase, compared to the 34% predicted by a nonselective entry model.

7.3 Increasing the number of potential bidders

If there are policies that can increase the number of potential bidders, how e�ective might

they be at increasing revenue? The NMSLO is considering a trial of online auctions with

the idea that this would widen the bidder pool. Li and Zheng (2009) show that when entry

is endogenous, revenue may or may not increase with the number of potential bidders; the

39The entry threshold is one minus the entry rate.
40[0.922, 0.943] is the approximate range of signals for which F1(v|s, z′β) is identi�ed given the variation of

the entry-cost shifter. Results for the S auction are qualitatively similar, as shown in Table 13 of Appendix
B.
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�competition e�ect� of having more bidders may be dominated by the �entry e�ect� of each

bidder entering with lower probability. I explore whether this policy will have its intended

e�ect by simulating a counterfactual increase in the number of potential bidders.

In the last row of Table 7, I display simulated counterfactual revenue for a 50% increase

in N1, the number of potential bidders in subgroup 1, from 23 to 34. This row includes both

the competition e�ect and the entry e�ect. I compare this to the competition-e�ect-only or

exogenous entry scenario where the number of entrants increases in proportion to the number

of potential bidders (second row). Judging from the numbers, I conclude that revenue will

indeed increase with N1, but the increase will be smaller than what we could expect under

an exogenous entry rate and proportionally smaller than the expansion in N1.

8 Conclusion

This paper performs a structural analysis of selective entry in an empirical auction market.

It takes a nonparametric approach that �exibly estimates the nature of selection in entry.

Also, it features a uni�ed auction model allowing for bidders' risk aversion and asymmetry to

explore not only the implications of selective entry alone but also its implications in conjunc-

tion with these other properties. The estimation procedure uses sieve maximum likelihood

to estimate bidders' value distributions, followed by constructive steps to estimate their util-

ity functions and entry costs. The procedure is supported by a step-by-step identi�cation

argument, including identi�cation for English auctions with entry where neither losing bids

nor number of entrants is observed.

The paper presents both empirical and simulated evidence of selective entry and its e�ect

on auction revenue. A key �nding is that, in �rst-price sealed-bid auctions, entry-induced

uncertainty combined with risk aversion tends to moderate the damage from a low number

of entrants, often bolstering revenue by an amount similar to having one additional entrant.

This e�ect does not apply to English auctions. An immediate policy implication is to favor

�rst-price sealed-bid auctions over English auctions in low-entry environments.
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Appendix A

Proof of Proposition 1 Nowik (1990) looks at a machine made up of N components, each of

which have a lifetime Xi with distribution Fi(·). The machine fails when certain designated subsets

of the components all fail; for instance, when k out of the N components fail. The statistician

observes the lifetime of the machine, the number of total components N , and the set of components

that had failed by the time the machine failed. Novik proves that if the Xi are independent, Fi(·)
are mutually absolutely continuous (there are no constant sections), each Fi(·) possesses a single

positive atom at the common essential in�mum, and there is at most one life-supporting component

(i.e. there is at most one component such that the machine cannot die without that component

dying), then all distributions Fi(·) are identi�ed.
The English auction model here can be viewed as just such a reliability theory problem: the

auction stops (�dies�) when N − 1 out of N private values are exceeded. The case of no entrants

is analogous to the case where all N machine components immediately failed. The conditions of

Nowik's theorem are satis�ed here: (V, S) are independent, Hm(v) is without constant sections

and possesses an atoms at v, and there are no �life-supporting components,� since any bidder has

positive probability of winning. Hence the Hm(v) are identi�ed by Nowik's theorem.

The entry thresholds s̄m are identi�ed by solving for the two unknowns s̄m, s̄−m in the following

system of two equations:

P(no one enters) = s̄Nmm s̄
N−m
−m

P(winner's subgroup= m& winning bid= r)

= P(exactly one bidder entered and his subgroup is m) = Nm(1− s̄m)s̄Nm−1
m s̄

N−m
−m .

(15)

The left-hand side probabilities in system (15) are observed in the data. Then the solution to the

system can be solved for as follows:

P(no one enters)

P(winner's subgroup= m& winning bid= r)/Nm + P(no one enters)

=
s̄Nmm s̄

N−m
−m

(1− s̄m)s̄Nm−1
m s̄

N−m
−m + s̄Nmm s̄

N−m
−m

=
s̄m

1− s̄m + s̄m
= s̄m. (16)

So the entry thresholds can be computed from observed probabilities, and then F ∗m(v; s̄m) is iden-

ti�ed as [Hm(v; s̄m)− s̄m]/(1− s̄m).

Proof of Proposition 4 Entry thresholds s̄m can be directly identi�ed separately for the O and

S formats as described before. F ∗m(v; s̄m), the value distribution conditional on entry at threshold

s̄m, is identi�ed from the O data, as explained in Proposition 1. Let Jm(b|{s̄m}) be the observed

distribution of S auction bids conditional on entry at threshold s̄m. Then, analogously to Lu and

Perrigne (2008) Proposition 1 - but now conditioning on entry thresholds to account for selective

entry - Um(·) are identi�ed from the S data as follows.
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Let v(α) and b(α) be the α-quantiles of F ∗m(v; s̄m) and Jm(b|{s̄m}), respectively; that is, v(α) ≡
F ∗−1
m (α; s̄m) and b(α) ≡ J−1

m (α|{s̄m}). Then, since bid functions are monotonic, (11) becomes

F ∗−1
m (α; s̄m) = J−1

m (α|{s̄m}) + λ−1
m (

Wm(J−1
m (α|{s̄m})|{s̄m})

dWm(J−1
m (α|{s̄m})|{s̄m})/db

).

Hence,

λm(F ∗−1
m (α; s̄m)− J−1

m (α|{s̄m})) =
Wm(J−1

m (α|{s̄m})|{s̄m})
dWm(J−1

m (α|{s̄m})|{s̄m})/db
, (17)

where Jm(·), and Wm(·) are observed in the S data, and F ∗m(·) is identi�ed from the O data. So

λm(·) is identi�ed using (17).

Given A6 and A7, Fm(·|·) is identi�ed from the O auction. As for cm of each auction format,

they are uniquely determined from the respective equilibrium entry conditions given Fm(·|·) and s̄m
for any Um(·), because Πm(s̄m|{s̄m}) and Πo

m(s̄m|{s̄m}) are monotonic in cm and com respectively.

Now it remains to identify Um(·) from λm(·). By de�nition, λm(x) ≡ Ũm(x)

Ũ ′m(x)
. With a scale

normalization such as Ũm(1) = 1, Ũm(x) = exp
∫ x

1 1/λm(t)dt. And given the location normalization

Um(0) = 0, Um(x) = Ũm(x+ cm)− Ũm(cm).
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Figures and Tables

Figure 1: Histogram of number of bids received in S auctions, Permian Basin 2005-2014
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Figure 2: Histogram of ln(price per acre), Permian Basin 2005-2014
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Prices are in 2009 dollars, de�ated by the GDP implicit price de�ator.
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Table 1: Auction format and auction price, Permian Basin 2005-2014

ln(price/acre)
auction format S 0.370

(0.035)
lease pre�x VB ("premium") 0.241

(0.045)
tract size (acres) -0.001

(0.000)
drilled before -0.026

(0.040)
ln(production†) 1970-auction date -0.003

(0.006)
Township†† FE Y
Polynomial of geographic coordinates††† Y
Date FE Y
Observations 4202
R2 0.508
Adjusted R2 0.447
† Oil and gas in barrel of oil equivalents (BOE).
†† A township is a 6 by 6 square mile area.
††† Fourth order polynomial

Heteroskedasticity robust standard errors in parentheses

Table 2: List of covariates z
Contract terms of lease:
Lease pre�x V0 or VB*

Time variables:
WTI oil prices, monthly
Natural gas 1 month futures*
Year �xed e�ects*

Location variables:
Location quartile dummies*
Distance to high-value center relative to own township (for upper quartiles)*
Dummy for having been drilled in the past
Volume of oil produced on tract, 1970-auction date
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Figure 3: Acreage o�ered inside and outside the Permian Basin
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Table 3: Non-Permian acreage and Permian bidding

(1) (2) (3) (4)
GLM† GLM OLS OLS
numbids numbids lnbid lnbid

Non P. Basin acreage (1000s) -0.007 -0.011 0.003 0.003
(0.003) (0.003) (0.003) (0.003)

Auction covariates†† N Y N Y
Number of bids - - Y Y
Observations 1039 1039 3083 3083
† Binomial logistic regression. Dependent variable is number of bids.
†† Includes all covariates listed in Table 2.

Heteroskedasticity robust standard errors in parentheses

Table 4: Comparing entry statistics between matched S and O leases
S O

Count: 0 bidders 10/432 12/432
Count: 1 bidder 66/432 66/432
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Figure 4: F̂1(v|s, z′β) and F̂2(v|z′β) at modal z′β
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Figure 5: Û1(·) (left) and Û2(·) (right)
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Table 5: HARA utility �tted parameter estimates

Û1(·) Û2(·)
α̂ 0.18 0.77

β̂ 12152 0
κ̂ 2893 4.6
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Figure 6: Simulated probability distribution of n at s̄1 = s̄1(z′β, x)
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Figure 7: Simulated revenue by realized n
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Table 6: Simulated revenue response to drop in entry threshold, at modal z′β
Selective Entry Nonselective Entry

s̄1 E[O price] %∆ (log∆) E[O price] %∆ (log∆)

0.943 46,085 - 46,085 -
0.922 58,419 27% (0.24) 61,751 34% (0.29)

Table 7: Counterfactual revenue with 50% increase in N1, at modal z′β and x
E[S price] E[O price]

Current 83,973 58,419
50% larger N1, proportional increase in entrants 124,214 83,859
50% larger N1, selective entry model 109,298 74,475
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For Online Publication: Appendix B

Assignment of auction items to S and O auction formats I regress the log of post-

auction oil and gas production up to December 2014 on auction format, controlling for the lease

pre�x and the number of months passed since the auction date. To allow auctioned tracts time

to start producing, I repeat the same regression in the second column only using leases for which

the 5 year lease term has passed (i.e. leases auctioned earlier than 2010). There is no relationship

between auction format and realized production.

Table 8: Auction format and production, Permian Basin 2005-2014

(1) (2)
log production† log production†

5 year+
auctionmethod S -0.039 -0.076

(0.115) (0.187)

lease pre�x VB 0.718*** 0.952***
(0.121) (0.188)

months passed since auction by Dec 2014 0.022*** 0.028***
(0.002) (0.005)

Constant -0.530*** -1.103**
(0.096) (0.457)

Observations 4202 2409

Heteroskedasticity robust standard errors in parentheses

* p<0.10, ** p<0.05, *** p<0.01

† Production of oil and gas between auction date and Dec 2014, in barrel of oil equivalents.

Proof of Proposition 2 Um(·) and cm are identi�ed if there is a unique utility function and

entry cost for each subgroup that satisfy the subgroup's equilibrium entry condition in (9), given

the Fm(·|·) and entry thresholds s̄m identi�ed from the O data as described in section 4.1. The

equilibrium entry conditions are the only restrictions on Um(·) and cm, since neither the utility

function nor entry cost a�ect bidding strategy in the O auction.

We see from (7) and (8) that, given Fm(·|·) and s̄m, the expected pro�t from entering the

auction Πo is monotonically decreasing in cm for any increasing utility function Um(·). Also, we

see from (7) that if cm = 0, Πo
m(s̄m|{s̄m}) > Um(0), and if cm = v̄, Πo

m(s̄m|{s̄m}) < Um(0). Then

given Fm(·|·) and s̄m, there must exist a cm ∈ (0, v̄) that satis�es the equilibrium entry condition

Πo
m(s̄m|{s̄m}) = Um(0) for any increasing utility function Um(·). Hence, Um(·) and cm are not

identi�ed.
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Proof of Proposition 3 Let U be the set of λ(·) that satisfy ξ′(·) > 0, i.e. the set of λ(·)
that result in strictly increasing bid functions. Let F be the set of {F (v|s) : s ∈ [0, 1]} that

are stochastically ordered and have identical support, in accordance with assumptions A2 and A3.

The model is identi�ed if there is a unique solution [Fm(·|·), Um(·), cm] to the following system of

equations and conditions for the subgroups m = 1, 2:

C1 λm(x) = Um(x−c)−Um(−c)
U ′m(x−c)

C2 [Fm(·|·), λm(·), cm] ∈ F × U × R

C3 The distribution of ξm(b) ≡ b+ λ−1
m ( Wm(b)

dWm(b)/db) is equal to F
∗
m(v; s̄m) ≡ 1

1−s̄m
∫ 1
s̄m
Fm(v|t)dt

C4 Π1(s̄∗1|{s̄∗m}) = U1(0) and Π2(s̄∗2|{s̄∗m}) = U2(0)

C1 restates the de�nition of λm(·), a transformation of Um(·) which is easier to work with. C3 says

the �rst-order condition for bidding must be satis�ed. C4 lists the equilibrium entry conditions for

the two subgroups.

By the proof of Remark 2 below, Fm(·|·) satisfying C2 and C3 exist for any λm(·) ∈ U ; therefore,
C2 and C3 together reduce to the condition λm(·) ∈ U . Now de�ne ψm(b) ≡ Wm(b)

dWm(b)/db . The proof

of Guerre, Perrigne, and Vuong (2009), Proposition 1 shows that λ(·) ∈ U reduces to a condition

that λ' > −ψ'. Then the entire system listed above reduces to λ′m > −ψ′m along with the equations

C1 and C4.

Now, I show that for any λm(·) satisfying λ′m > −ψ′m, there exist Um(·) and cm that satisfy

C1 and C4. By de�nition, λ(x) = Ũ(x)

Ũ ′(x)
. The solution for Ũ(x) is Ũ(x) = exp

∫ x
1/λ(t)dt, where

the starting value for the integral determines the scale normalization. Using this Ũm(·), expected
stage 2 pro�t in (2) can be rewritten as πm(v, b|{s̄m}) = Ũm(v − b)Wm(b|{s̄m}) − Ũm(cm). This

expression is monotonically decreasing in cm given Ũ(x), s̄m, and the observed bid distribution, so

Πm(s̄m|{s̄m}) is also monotonically decreasing in cm. If cm = 0, Πm(s̄m|{s̄m}) > Um(0), and if cm =

v̄, Πm(s̄m|{s̄m}) < Um(0). Thus there exists cm that satis�es C4, the equilibrium entry condition

Πm(s̄m|{s̄m}) = Um(0). Finally, there exists Um(x) that satis�es Ũm(x) = Um(x − c) − Um(−c),
namely Um(x) = Ũm(x+ c)− Ũm(c). This means there exists Um(x) that satis�es C1.

So for any λ satisfying λ′m > −ψ′m, there exists a structure [Fm(·|·), Um(·), cm] that satis�es the

conditions C1-C4. Therefore, the model is not identi�ed.

Proof of Remark 1 Assume that F (·|·) does not depend on N or c. Further, assume N and

c are determined independently of each other. Since s̄(c,N) is increasing in both N and c, we can

think of two structures {N, c, U(·), F (·|·)} and {N ′, c′, U(·), F (·|·)} with N ′ > N and c′ < c that

satisfy s̄(c,N) = s̄(c′, N ′). Since the bidding strategy b(·) is increasing in N and decreasing in c

when s̄ is held constant, b(v;N ′, c′) > b(v;N, c). Suppose there exists a value of s̄, say s̄ = y, for
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which we observe two di�erent values of N in the data. Given this setting, we can identify F ∗(v; s̄)

using the identi�cation strategy of Guerre, Perrigne, and Vuong (2009).

Let bL(α) be the α-quantile of submitted bids (including placeholders) for the structure (N, c),

and de�ne bH(α) similarly for (N ′, c′), so that bH(α) > bL(α). Let v(α) be the α-quantile of the

distribution F ∗(·; y), where y is recovered directly from the data. Then compatibility conditions are

v(α) = bL(α) + λ−1(
W (bL(α)|y)

dW (bL(α)|y)/db
) = bH(α) + λ−1(

W (bH(α)|y)

dW (bH(α)|y)/db
) (18)

for all α ∈ [0, 1]. Since the distribution of bids follows Gj(b|y) ≡ F ∗(b−1
j (b); y) j ∈ {L,H}, we

have
W (bj(α)|y)

dW (bj(α)|y)/db =
Gj(bj(α)|y)Nj−1

(Nj−1)Gj(bj(α)|y)Nj−2gj(bj(α)|y)
=

Gj(bj(α)|y)
(Nj−1)gj(bj(α)|y) = 1

Nj−1
α

gj(bj(α)|y) for α ∈ [0, 1].

Then the compatibility conditions can be rewritten as

v(α) = bL(α) + λ−1(
1

NL − 1

α

gL(bL(α)|y)
) = bH(α) + λ−1(

1

NH − 1

α

gH(bH(α)|y)
) (19)

De�ne Rj(α) ≡ 1
Nj−1

α
gj(bj(α)|y) for α ∈ [0, 1]. Now we see that these are the exact compatibility

conditions used in GPV 2009. Hence λ(·) and F ∗(·; y) are identi�ed. Once λ(·) is identi�ed, we can
use the inversion of Guerre et al. (2000) to identify F ∗(·; s̄) for all observed s̄. Arguments made

previously using an exclusion restriction and continuous variation assumption allow identi�cation

of F (·|·) from F ∗(·; ·). And the entry equilibrium equations, along with the de�nition λ(x) =
U(x−c)−U(−c)

U ′(x−c) , identify U(·), c, and c′.

Remark 2 For any cdf, there exist stochastically ordered Fm(v|s) with identical support such

that 1
1−s̄m

∫ 1
s̄m
Fm(v|t)dt is equal to that cdf.

Proof. There exists for any cdf F ∗(·; s̄) a function k(·) de�ned on [v, v̄] that satis�es the following

conditions:

1. k(·) is continuously di�erentiable

2. ∂
∂v [F ∗(v; s̄) + k(v)] > 0 and ∂

∂v [F ∗(v; s̄)− k(v)] > 0; i.e. k′(v) ∈ (−f∗(v; s̄), f∗(v; s̄))

3. ∀v ∈ (0, 1) k(v) < 0

4. k(v) = 0

5. k(v̄) = 0

(Condition 2 just says k′(v) must lie in some band around zero which is continuously changing in

v, since f∗(v; s̄) is continuous.) k(·) must exist because it can be freely chosen from the in�nite

number of functions that satisfy conditions 1-3, subject to only two point equalities, conditions 4

and 5. For instance, I can construct one such k(·) this way:
Let k(v) = 0, satisfying condition 4.

For each v < v+v̄
2 , pick k′(v) ∈ (max{−f∗(v; s̄),−f∗(v̄ − (v − v); s̄)}, 0) and let k′(v+v̄

2 ) = 0,

while maintaining continuity of k′(v). This satis�es conditions 1 and 2.

For each v > v+v̄
2 , let k′(v) = −k′(v + (v̄ − v)) (i.e. k′(v) to the left and right of v+v̄

2 are mirror

images of each other)

Then k(v) =
∫ v
v k
′(v)dv + k(v).
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The construction of k′(v) above gives k(v̄) =
∫ v̄
v k
′(v)dv + k(v) = 0, satisfying #5. As for #3,

we know k(v) < 0 for v ≤ v+v̄
2 since k′(v) < 0 there. Also, since k(v) is monotonically increasing

for v > v+v̄
2 and k(v̄) = 0, it must be that k(v) < 0 for v > v+v̄

2 as well. Hence #3 is satis�ed.

Given such a k(·), let F (v|s) = F ∗(v; s̄) + 2s−s̄−1
1−s̄ k(v). Then we see that

F (v̄|s) = F ∗(v̄; s̄) +
2s− s̄− 1

1− s̄
k(v̄) = 1 + 0 = 1

Since 2s−s̄−1
1−s̄ ∈ [−1, 1] and k′(v) ∈ (−f∗(v; s̄), f∗(v; s̄)) from #2, 2s−s̄−1

1−s̄ k′(v) ∈ (−f∗(v; s̄), f∗(v; s̄)).

Hence

∂

∂v
F (v|s) =

∂

∂v
[F ∗(v; s̄) +

2s− s̄− 1

1− s̄
k(v)] > 0 (monotonicity)

∂

∂s
F (v|s) =

2

1− s̄
k(v) ≤ 0 (stochastic ordering)

1
1−s̄

∫ 1
s̄ F (v|t)dt = 1

1−s̄
∫ 1
s̄ F

∗(v; s̄) + 2t−s̄−1
1−s̄ k(v)dt

= F ∗(v; s̄) + k(v) 1
(1−s̄)2 [

∫ 1
s̄ 2tdt+ (−s̄− 1)(1− s̄)]

= F ∗(v; s̄) + k(v) 1
(1−s̄)2 [1− s̄2 − (1− s̄2)]

= F ∗(v; s̄)

So we have found stochastically ordered cdfs F (v|s) such that 1
1−s̄

∫ 1
s̄ F (v|t)dt = F ∗(v; s̄).

Criterion for selecting polynomial degrees in the sieve maximum likelihood esti-

mator

Just as kernel methods require choosing a bandwidth, sieve methods require choosing degrees for

the polynomial bases being used. One way to do this is to choose the polynomial degrees that

minimize a relevant criterion.

The estimator estimates the unknown value distributions Fm(v|s, z) using the observed distri-

bution of O prices conditional on entry thresholds and auction covariates, F (p|s̄, z). Therefore,

F (p|s̄, z) is a good candidate to use as the basis for building a mean squared error (MSE) crite-

rion. Speci�cally, I choose the polynomial degrees that yield the best approximation of observable

F (p|s̄, z) by minimizing the mean squared error between observed and approximated F (p|s̄, z). The
observed distribution can be computed with kernel methods using rule of thumb bandwidths.

With a trivariate polynomial, the number of parameters αp,q,r to be estimated grows steeply with

the choice of polynomial degrees. When using Bernstein polynomials, the number of polynomial

coe�cients needed to approximate subgroup 1's F1(v|s, z) is (m+1)(n+1)(l+1), and for subgroup

2's F2(v|z) it is (m + 1)(l + 1) (refer to sections 5.2 and 6.4). Even if I exploit F (v) = F (r) = 0,

which means pinning down α0,q,r = 0, the total number of parameters to be estimated is m(n +

1)(l+1)+m(l+1). As an illustration, allowing a degree of just 5 for each of the three variables leads

to 210 parameters being estimated. Thus, minimizing the MSE criterion without any constraints

could lead to polynomial degrees that yield an impractically high number of parameters to estimate.
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On the other hand, the parameters being estimated are not free and independent. As the

polynomials are approximating cdf's, all Bernstein polynomial parameters must lie within [0,1].

Furthermore, since I restrict Fm(v|s, z) to be nondecreasing in v, as all cdf's should be, αp,q,r is

bounded by [αp−1,q,r,αp+1,q,r]; each parameter is bounded by other parameters. Therefore, estimat-

ing parameters in this context is less demanding than estimating the same number of parameters

when they are independent and unbounded.

For my estimation, I choose polynomial degrees that minimize the MSE criterion subject to a

constraint that the number of parameters to be estimated must not exceed 200, i.e. m(n + 1)(l +

1) +m(l + 1) ≤ 200. The criterion minimizing degrees are m = 10, n = 2, l = 4.

Simulations of the sieve maximum likelihood estimator

I test the estimator using simulated data. As shown in Table 9, the simulated environment mimics

the environment of the actual auction, with the goal of testing how well the estimator would perform

in this application. In choosing the shapes of the distributions Fm(v|s, z) from which to draw the

simulated data, I rely on the distribution of observed sealed bids rather than choosing an arbitrary

shape. Speci�cally, I construct the �true� value distribution for the simulation by approximating

the observed bid distribution within the space of Bernstein polynomials. Then, using these value

distributions and the settings in Table 9, I simulate the data (transaction prices and winners'

subgroup identities) that would be generated by the auction model of this paper. Finally, the sieve

maximum likelihood estimator is employed on this simulated data. This process is repeated 100

times.

Simulation results for F̂1(v|s, z) are shown in Figure 8. In the left column I hold z �xed at the

median value while varying s, and in the right column I hold s �xed at the median value while

varying z. The solid dark line is the true F1(v|s, z) from which simulated data were drawn, and

the light dashed lines represent the 100 Monte Carlo runs of the estimator. As s gets lower, the

estimated F1(v|s, z) becomes less precise. This is as expected; the lower a bidder's signal, the less

likely he will enter the auction, so bids for bidders with lower s are less frequently observed. Figure

9 shows results for F̂2(v|z), varying z.

Table 9: Simulated data and estimator settings
items auctioned 1000

N1 23
N2 1

�xed entry rate of subgroup 2 0.84
s̄1 U [0, 1]
s U [0, 1]
z U [0, 1]

Bernstein polynomial degree:
v 10
s 2
z 4
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Figure 8: Monte Carlo simulations of sieve maximum likelihood estimator, subgroup 1
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Figure 9: Monte Carlo simulations of sieve maximum likelihood estimator, subgroup 2
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Covariates z

Observable characteristics of auctioned leases fall into three major categories: terms of the lease

(royalty rate, annual rental), time of auction (industry, economic, local conditions of that time),

and location of the tract (encompassing geological features). The royalty rate is indicated by the

lease pre�x, V0 or VB. The rental rate ($0.50 or $1) is determined by whether the tract is located

in a township north ($0.50) or south ($1) of a horizontal geographic line; thus it is subsumed by

the location variables. Year �xed e�ects represent the time of auction, supplemented by oil and gas

prices.

Location contains important information and is observed at a detailed level. To reduce this

information to a smaller number of variables while retaining �exibility, I �rst regress all submitted

sealed bids on the lease pre�x and time variables, along with township (6-by-6 square mile) �xed

e�ects, of which there are more than 200. I then sort the township coe�cients into quartiles, and

assign a dummy variable for each quartile. Mapping the quartiles (Figure 10) shows a pattern in
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which townships of the south-central area are highest value and values decline moving further out

and away from this �center.�

Figure 10: Map of townships in each location quartile

To allow variation within township, I supplement the quartile dummies with a distance-to-center

variable that is computed relative to own township: taking the average x-y coordinates of all top-

quartile townships as the �center� of high value, I compute how much farther each auctioned lease

is from this �center� relative to the centroid of the township it is located in. The conjecture is that

within each township, tracts that are located closer to the �center� will have relatively higher value.

This relative position within township seems to matter only for townships within some radius of the

center's in�uence, so I add this variable only for the upper quartiles. The drilling and production

history associated with each geographic location is also observed.41

Table 10: Summary statistics of covariates
variables mean min max
lease pre�x VB (dummy) 0.389
drilled before (dummy) 0.439
log production 1970-auction date (boe) 1.099 0 16.91
WTI oil price† 79.59 39.07 135.2
nat gas 1 mo futures† 6.101 1.952 14.45
† De�ated by GDP implicit price de�ator.

Not summarized: year �xed e�ect dummies and geographic location descriptors.

41The information contained in geographic location could be organized in alternative forms.
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To ascertain which characteristics of the lease most a�ect its value to bidders, I regress the log

of submitted sealed bids on these covariates. Table 11 shows the results. The coe�cient on the

dummy variable for lease pre�x VB is highly signi�cant and positive because the NMSLO assigns

the VB pre�x to premium tracts. Also, the location quartile �xed e�ects are higher for higher

quartiles, and being further away from the �center� leads to lower bids. Controlling for year �xed

e�ects, gas prices seem to explain bids better than oil prices. The incremental explanatory power of

the remaining variables on bids is negligible, perhaps because this information is subsumed in the

lease pre�x and location variables. As such, I take the covariates in column (3) to form the single

index.

Table 11: Regression of ln(sealed bid) on observable characteristics

(1) (2) (3)

lease pre�x VB 0.257 0.253 0.256
(0.042) (0.043) (0.042)

location quartile 2 0.552 0.552 0.551
(0.051) (0.051) (0.051)

location quartile 3 0.986 0.989 0.989
(0.053) (0.053) (0.053)

location quartile 4 1.743 1.746 1.745
(0.057) (0.057) (0.057)

relative dist. to center (if upper qrtl) -0.054 -0.056 -0.054
(0.018) (0.018) (0.018)

nat gas 1 mo futures 0.036 0.030
(0.016) (0.014)

WTI oil price -0.001 0.001
(0.002) (0.001)

drilled before -0.023 -0.018
(0.041) (0.041)

log production 1970-auction date (boe) 0.003 0.003
(0.006) (0.006)

Year FE Y Y Y
Observations 3083 3083 3083
R2 0.352 0.351 0.352
Adjusted R2 0.348 0.347 0.348

Heteroskedasticity robust standard errors in parentheses

Method for simulating counterfactual bid functions

With asymmetric bidders and other model features, we do not have analytical solutions for the bid

function bm(v) in most counterfactual scenarios. They need to be computed numerically in some

way.

For each of the counterfactual scenarios I consider, the relevant inverse bid function ξm(b) can
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be written in terms of b and the distribution of b, analogously to (11). Of course, the function

ξm(b) depends on Nm, Um(·), whether bidders know the number of realized bidders, and other

details that can change for each scenario. Now, let vgrid denote a grid of values that spans the

support of v. Given the bid function of subgroup −m, I can compute the bid function for subgroup

m by searching for the bm(·) that minimizes the sum of log di�erences between v and ξm(bm(v))

over this grid,
∑

i |ln(vgridi)− ln(ξm(bm(vgridi)))|. I conduct the search for bm(·) in the space of

monotonically increasing Bernstein polynomials of degree 10. Starting values for the search are set

at approximations of the bm(·) observed in actual data.

As there are two asymmetric subgroups, I implement an iterated best response procedure, in

which this minimization is iterated in turns for each group while holding the other group's strategy

�xed at the last iteration's b̂m(·). The �nal b̂m(·) are obtained when they stabilize for both groups.

In practice, I observe that the b̂m(·) converge quickly, stabilizing by the 2nd or 3rd iteration.

Table 12: Binomial logistic regression of n1 on x and z′β

Non P. Basin acreage (1000s) -0.011
(0.003)

z′β -43.561
(9.747)

(z′β)2 3.983
(0.909)

(z′β)3 -0.120
(0.028)

Constant 154.937
(34.704)

Observations 1039

Standard errors in parentheses

Table 13: Revenue response to drop in entry threshold, at modal z′β
Selective Entry Nonselective Entry

s̄1 E[S price] %∆ (log∆) E[S price] %∆ (log∆)

0.943 63,440 - 63,440 -
0.922 83,973 32% (0.28) 88,077 39% (0.33)
* Everything other than selection in entry is kept the same between

�Selective� and �Nonselective� columns, including utility functions and

entry costs.
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