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Abstract

A typical feature of English auctions and negotiated-price markets modeled

as English auctions is that only the transaction price and identity of the winner

are observed; auction entrants other than the winner are commonly not recorded

in the data. Meanwhile, existing identi�cation results for independent private

values, including Athey and Haile (2002), require that the set of entrants be

observed. This paper �lls the gap by establishing nonparametric identi�cation of

asymmetric bidders' value distributions when losing entrants are not observed,

under a general class of entry models in which each potential entrant enters the

auction with some bidder-speci�c probability.
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1 Introduction

English auctions are one of the most commonly observed auction formats, used to sell

objects ranging from �sh, timber, and tobacco to art, cars, and wine. In addition,

markets with negotiated prices often resemble English auctions and are modeled as

such in the economics literature;1 examples include Woodward and Hall (2012), Allen,

Clark, and Houde (2014, 2019), and Cuesta and Sepúlveda (2019) on mortgage and

consumer loan markets.

A typical feature of English auction and negotiated-price market data is that only

the transaction price and identity of the winning bidder are observed. To establish

identi�cation from these observables, most papers reference Athey and Haile (2002).

In their Theorem 2, Athey and Haile (2002) establish that value distributions of asym-

metric bidders under the independent private values paradigm are nonparametrically

identi�ed from auction prices and winner identities alone. An assumption underly-

ing this result, as stated in the paper, is that the �econometrician always observes

the number of bidders� n, so that the auction price can be modeled accurately as

an (n − 1):n order statistic, i.e. the second best among n bidders' valuations.2 In

addition, if bidders are asymmetric, one must observe not only the number but �the

set of bidders who participate in each auction�.

However, many candidate applications fail to satisfy this condition. In the exam-

ple of a consumer loan, the econometrician may observe the �nal interest rate and

identity of the lending bank as well as the set of all N banks in the consumer's neigh-

borhood (�potential entrants�) but will typically not observe the n ≤ N banks from

which the consumer actually solicited quotes (�entrants�). To assume n = N�that

consumers always solicit quotes from every bank in the neighborhood�would be a

misspeci�cation and bias estimates of banks' value distributions. Due to their oral

nature, even English auctions organized by federal and state governments often lack

records of n. This leaves the econometrician ignorant of the true order statistic that

the observed auction price represents. Further complicating matters, the unobserved

entrants may be di�erent in every auction instance, may be stochastic, and may be

1Some models of negotiated price markets, such as sequential search models, are not suited for
representation by an English auction. I proceed taking as given the researcher's choice to model
their particular application as an English auction.

2Under the independent private values paradigm, the English auction is outcome-equivalent to a
second-price sealed-bid auction. See Milgrom and Weber (1982).
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determined by an endogenous entry process. As a result, there is a gap between the

observed data and available identi�cation theorems. Intuitively, an unobserved num-

ber of entrants poses a challenge to identi�cation because it is di�cult to distinguish

whether a high auction price is caused by a large number of entrants or high value

distributions.

This paper establishes nonparametric identi�cation of asymmetric bidders' value

distributions when the number/set of entrants in an English auction are unobserved.

The assumed observables are the auction price, identity of the winning bidder, and

set of potential entrants. Requiring knowledge only of potential entrants grants a

signi�cant advantage for empirical work because data on potential entrants are more

readily available than data on entrants to each auction, as in the example above and

as I elaborate further below. More precisely, I establish identi�cation under a popular

class of entry models in which each potential entrant enters the auction with some

bidder-speci�c probability, which is unknown to the econometrician. I show that

the entry probabilities are identi�ed separately from the value distributions. The

literature shows that knowledge of these entry probabilities often enables subsequent

identi�cation of entry model primitives, as I later illustrate. I emphasize, however,

that the focus of this paper is on addressing the di�erential challenge that arises from

the nature of English auction data, rather than on studying entry models per se,3 and

the identi�cation proof itself is agnostic about the speci�c entry model generating

the entry probabilities. Discussion of applicability to speci�c entry models, including

models of selective entry, follows in Section 3. As for the auction paradigm, this

paper focuses on independent private values; for English auctions under the common

value paradigm, Athey and Haile (2002) establish a strong negative result in which

the model is not identi�ed even when all bids are observed and the set of entrants is

known.

Concretely, I consider an English auction with N potential entrants, in which

each potential entrant i independently enters the auction with probability pi, and the

resulting n ≤ N entrants each draw a value from the distribution Fi(·) and bid in the

auction. I explain that, upon assigning appropriate placeholder outcomes to auctions

3There is an extensive literature on identifying entry models when the set of entrants to each
auction is known. Methodological studies and empirical applications include Li and Zheng (2009),
Athey et al. (2011), Krasnokutskaya and Seim (2011), Li and Zheng (2012), Marmer et al. (2013),
Roberts and Sweeting (2013), Bhattacharya et al. (2014), Gentry and Li (2014), Li and Zhang
(2015), and others.
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with one or zero entrants, the distribution of auction prices and winner identities

generated by this auction model is equivalent to that generated by a translated model

in which all N potential entrants `enter' the auction but now draw their value from

an adjusted distribution given by (1 − pi) + piFi(·). The atom of size (1 − pi) at

the in�mum of this distribution represents potential entrant i's probability of not

entering the auction. The advantage of the translated model is that there are now N

value draws from the adjusted distributions, where N is known, rather than n ≤ N

value draws from F (·), where n is unknown. After reframing the English auction

model in this manner, I apply a result from Nowik (1990), from the literature on

competing risks, which shows identi�cation of just such atomic distributions given

observables that are equivalent to those available in English auctions. To clarify

the distinction from the proof in Athey and Haile (2002), their Theorem 2 applies

a result from Meilijson (1981), which is from the same literature as Nowik (1990)

but assumes distributions are non-atomic and thus cannot be directly applied to the

atomic distributions that arise as above upon translating auctions with probabilistic

entry.

In addition to Athey and Haile (2002), closely related work includes Adams (2007)

and Komarova (2013). Komarova (2013) provides an alternative to Meilijson (1981)'s

proof and a more extensive discussion when it comes to identifying bidders' value

distributions in English auctions. A subsection of that paper considers the case of

a stochastic number of entrants where the set of entrants is unobserved but the

probability distribution of the set of entrants is known by the econometrician. The

subsection is intended as an illustration and does not provide a general proof of

identi�cation. In the case of symmetric bidders, Adams (2007) proves identi�cation

when the observed auction price equals the (n−1):n order statistic and the probability

distribution of n is known by the econometrician or there is an instrument that shifts

that distribution of n in an in�nitely continuous manner.

When two or more (n−m):n order statistics are observable per auction, such as on

eBay, Song (2004) and Freyberger and Larsen (2022) identify the value distribution

when neither n nor its distribution are known. There is also a literature studying

identi�cation in �rst-price auctions with missing information on bidders. Guerre and

Luo (2022) prove identi�cation from winning bids with unknown numbers of bidders

by using the monotonic increase of the upper bound of �rst-price auction bids in the

number of bidders. Meanwhile, An, Hu, and Shum (2010) and Shneyerov and Wong
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(2011) study �rst-price auctions where the number of observed entrants di�ers from

the competition that bidders perceive and base their bidding strategies on.

My paper �lls the need for an identi�cation result in English auctions when the

econometrician does not know the set of entrants nor the probability distribution

thereof. This identi�cation result does not require symmetry of the bidders, instru-

ments, or observability of multiple bids per auction.

2 Identi�cation

Consider an English auction for a single, indivisible item. There is a set of N potential

entrants. Following the literature on auctions with entry, I de�ne potential entrants

as the universe of bidders that have ex ante a non-zero probability of entering the

auction.4 For example, a common empirical implementation is to count all �rms

active in the relevant industry, geographic area, and timeframe as potential entrants.

This information is readily available compared to records of the speci�c set of �rms

that entered each auction. Each potential entrant i ∈ {1, ..., N} enters the auction

with probability 0 < pi < 1, resulting in n ≤ N entrants to the auction. Competitors'

entry decisions are unknown at the time of one's own decision, and the entry decision

of each potential entrant is independent of the others'.5 This type of entry equilibrium

can be generated by various entry models which I delineate in Section 3. For purposes

of the main identi�cation result, it does not matter which entry model is generating

pi so long as there is a �xed pi for each i.

Upon entering the auction, each entrant learns her private value vi for the auc-

tion item, which is independently distributed across bidders according to Fi(·) with
support [v, v̄]. As the entrant learns her value only after deciding to enter, there is no

selection on values here, following Levin and Smith (1994). After �rst demonstrating

identi�cation for this baseline scenario, I explain the extension to selective entry in

Section 3. Following Milgrom and Weber (1982)'s model of English auctions, I treat

the English auction here as equivalent to a second-price sealed-bid auction. It is a

weakly dominant strategy for each entrant to bid their value vi, and this is una�ected

by whether they know the number of entrants n. Then the entrant with the highest

4By ex ante, I mean in expectation prior to the realization of any bidder-auction speci�c random
variables.

5This rules out models in which potential entrants condition their entry decisions on the decisions
of others or entry is based on signals that are correlated even after conditioning on covariates.
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v wins the auction and pays a price equal to the second highest v among n entrants.

Thus, the auction price is the order statistic v(n−1):n; in particular, it is not v(N−1):N ,

as only n ≤ N bidders entered and formed valuations of the auction item.

If there are no entrants, the item is not sold. If there is only one entrant, the

sole entrant wins the auction at a public, non-binding reserve price, r ≤ v. Section

3 discusses the case of a binding reserve price. Note that as v(n−1):n ≥ v for n ≥ 2,

there can be auction prices t that equal r or v but there cannot be any t ∈ (r, v) if

r < v. Thus, the cumulative distribution function of observed t will be �at in (r, v)

if r < v, and v is identi�ed as the supremum of t in that �at region.

The question is whether the value distributions Fi(·) are identi�ed from data

typically observed in applications modeled as English auctions. These data include

the auction price, identity of the winning bidder, and set of potential entrants. In

particular, the set and number of entrants, bids other than the auction price, and the

entry probabilities pi are not observed. Intuitively, it is not obvious whether strong

Fi(·) are distinguishable from large pi, as both would manifest as high auction prices

in the observed data. Incorrectly assuming that pi = 1 for all i�i.e. that the auction

price equals v(N−1):N�would lead to negative bias in value distribution estimates.

To approach this identi�cation problem, I begin by demonstrating that this auc-

tion with probabilistic entry can be translated into an auction where all N potential

entrants `enter' but draw their values from adjusted distributions that now have an

atom at the in�mum.

Proposition 1. The following two models of second-price sealed-bid auctions generate

identical distributions of `auction prices' t and winner identities.

1. Each potential entrant i ∈ {1, ..., N} enters the auction with probability pi and

draws her value from distribution Fi(·), where Fi(·) has support [v, v̄]. When

there are no entrants or the auction price equals the reserve price, assign a

placeholder `auction price' of t = v.

2. Each potential entrant i ∈ {1, ..., N} enters the auction with probability 1 and

draws her value from distribution Hi(·) ≡ [(1 − pi) + piFi(·)], where Hi(·) has
support [v, v̄]. Always de�ne the `auction price' t to equal the second highest of

drawn values. If all N bidders bid v, the winner identity is ∅.

The appendix provides a proof for the general case. Here, I use the simple example of

N = 3 to illustrate the proposition, denoting the set of potential bidders as {i, j, k}.
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Under model 1 of the proposition, consider the event that potential bidder i wins the

auction with auction price t ∈ (v, v̄]. Since t > v, there must have been at least one

other entrant besides i. There are three possible combinations of entrants that could

have generated this event: {i, j}, {i, k}, and {i, j, k}, which occur with probability

pipj(1− pk), pi(1− pj)pk, and pipjpk, respectively. Conditional on entrant set {i, j},
the probability density of the event is [1 − Fi(t)]fj(t); conditional on {i, k}, it is

[1− Fi(t)]fk(t); and conditional on {i, j, k}, it is [1− Fi(t)]{fj(t)Fk(t) + fk(t)Fj(t)}.
Therefore, summing across the possible entrant combinations, the probability density

of the event is

pipj(1− pk)[1− Fi(t)]fj(t) + pi(1− pj)pk[1− Fi(t)]fk(t)

+ pipjpk[1− Fi(t)]{fj(t)Fk(t) + fk(t)Fj(t)}

= pi[1− Fi(t)]{pjfj[(1− pk) + pkFk(t)] + pkfk[(1− pj) + pjFj(t)]}

= [1−Hi(t)]{hj(t)Hk(t) + hk(t)Hj(t)}.

The last expression, where hi(·) ≡ pifi(·) denotes the �rst derivative of Hi(·), is the
probability density of the stated event under model 2 of the proposition, con�rming

the result.

The intuition for Proposition 1 is as follows. Under model 1 of the proposition,

potential bidder i winning with auction price t implies that i entered and bid higher

than t, a second-highest bidder j ̸= i entered and bid exactly t, and all other potential

bidders k ̸= i, j either did not enter or entered and bid less than t. The probability of

the �rst component is pi[1− Fi(t)], the probability density of the second component

is pjfj(t), and the probability of the third component for each k is (1− pk)+ pkFk(t).

By independence across bidders, the probability density of the event is then pi[1 −
Fi(t)]

∑
j ̸=i

(
pjfj(t)

∏
k ̸=i,j[(1− pk) + pkFk(t)]

)
. By de�nition of Hi(·), this equals

(1 − Hi(t))
∑

j ̸=i

(
hj(t)

∏
k ̸=i,j Hk(t)

)
, which is the probability density of the same

event under model 2 of the proposition.

The standard identi�cation approach is to assume knowledge of the n ≤ N en-

trants to each auction and then identify Fi(·). Here, to deal with unobserved n,

I approach identi�cation from the perspective of the second model in Proposition

1, assuming knowledge only of the N potential entrants and then identifying Hi(·).
Identi�cation of Hi(·) implies identi�cation of both pi and Fi(·).

6



Given Proposition 1, I proceed to establish identi�cation of Hi(·) by applying a

result from Nowik (1990), from the literature on competing risks. Preceding that, I

restate the relevant portion of Nowik's result. The original problem studied by Nowik

(1990) is that of a machine made up of N components, each of which have a lifetime vi

with distribution Hi(·). The machine fails when k out of the N components fail. The

goal is to identify Hi(·) from the distribution of the observed lifetime of the machine

t and the set of components that failed by time t, the �fatal set�. A �life-supporting�

component is de�ned as a component that must fail in order for the machine to fail.

If there is an atom at the in�mum of Hi(·), its size represents the probability that

component i is `dead on arrival'.

Nowik (1990). Assume that the components' lifetimes vi ∼ Hi(·), i ∈ {1, ..., N},
are independent. Assume, further, that Hi(·), i ∈ {1, ..., N}, are mutually absolutely

continuous and that each possesses a single positive atom at the (common) essential

in�mum. Then a necessary and su�cient condition for identi�ability of all distribu-

tions Hi(·) is that there is at most one life-supporting component.

The English auction in which not all potential entrants enter translates into a

competing risks problem where machine components can be dead on arrival. Using

the framework of the second model in Proposition 1, the �components of the system�

correspond to the N potential entrants. The auction price corresponds to the lifetime

of the machine t. The auction stops or �dies� when t exceeds N − 1 out of N private

values each drawn from the respective Hi(·). Therefore, the �fatal set� corresponds

to all potential entrants other than the auction winner. If all components of the

system are dead on arrival, no component remains alive at time t, which corresponds

to the auction winner's identity being ∅. Importantly, Nowik (1990)'s identi�cation

result does not require knowledge of which components were live on arrival�the

set of entrants�but only of which components had failed by the time the machine

died�the N potential entrants minus the auction winner. Meilijson (1981)'s proof, in

assuming non-atomic distributions, does not allow for the possibility of components

being dead on arrival and requires that the set of entrants be known. Nowik (1990)'s

proof addresses this possibility and requires only that the set of N potential entrants

be known. Formally,

Theorem 1. In the independent private values model, assume that Fi(·) are contin-

uous with no constant sections and same support, 0 < pi < 1 for all i ∈ {1, ..., N},
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and entry decisions are independent across bidders. Then Fi(·) and pi for all i are

identi�ed from the auction price, the identity of the winner, and the set of potential

entrants. If bidders are symmetric, F (·) and p are identi�ed from the auction price

and number of potential entrants.

Proof. By Proposition 1, I reinterpret the auction as one in which all N potential

entrants `enter', but draw values from Hi(·) ≡ [(1 − pi) + piFi(·)] instead of Fi(·).
Each Hi(·) has an atom of size (1 − pi) at the in�mum of its support, representing

the probability (in the original model) that potential entrant i does not enter.

Then the conditions of Nowik (1990)'s theorem are satis�ed here: the values vi are

independent across bidders, Hi(·) is without constant sections and possesses an atom

at the in�mum of its support, and there are no �life-supporting� bidders, since any

bidder has a positive probability of winning. The �components of the system� are the

set of all N potential entrants, and the �fatal set� is the set of all potential entrants

other than the auction winner. Hence the Hi(·) are identi�ed by Nowik (1990), and

pi and Fi(·) are identi�ed as an immediate implication.

Intuition for the separate identi�cation of pi is as follows. As discussed in the proof

of Proposition 1, we have that Pr(no winner) =
∏N

j=1(1−pj) and Pr(bidder i wins at price r) =

pi
∏

j ̸=i(1− pj).
6 Then

Pr(no winner)

Pr(bidder i wins at price r) + Pr(no winner)
(1)

=

∏N
j=1(1− pj)

pi
∏

j ̸=i(1− pj) +
∏N

j=1(1− pj)
=

1− pi
pi + 1− pi

= 1− pi.

So the pi are identi�ed as a function of observed probabilities.

3 Application to speci�c entry models

This section discusses the application of Theorem 1 to speci�c entry models from

the literature. First, consider English auctions with no entry cost but with a public

reserve price r, which is binding as v < r < v̄. Let bidder i's value be an independent

draw from Ji(·) on support [v, v̄]. In this case, the entry probability `pi' in Theorem 1

6Note that, as this is a second-price auction, winning with an auction price of r does not mean
the winning bidder bid r but that the second highest bidder either did not bid or bid exactly r.
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corresponds to 1−Ji(r) with 0 < 1−Ji(r) < 1. The `Fi(·)' in Theorem 1 corresponds

to the value distribution conditional on entry, [Ji(·)− Ji(r)]/[1− Ji(r)], with support

[r, v̄]. Thus, Theorem 1 allows identi�cation of Ji(·) on [r, v̄]. Identi�cation of Ji(·)
below the lowest reserve price is impossible even if all bids are observed and the set

of entrants is known.

Second, consider the popular Levin and Smith (1994) model of endogenous entry

adopted by Li and Zheng (2009), Athey, Levin, and Seira (2011), and Krasnokutskaya

and Seim (2011), among others. In this model, potential entrants have no information

about their value prior to entering the auction, as in the baseline scenario of Section

2. There are two versions of this model that have been applied empirically. One is a

mixed strategy entry model (e.g., see Athey, Levin, and Seira (2011)) in which each

potential entrant has a constant entry cost and is indi�erent between entering and

not entering the auction in equilibrium. The other is a pure strategy version (e.g.,

see Krasnokutskaya and Seim (2011)) in which each potential entrant draws an entry

cost from a distribution, independently of competitors, and enters the auction if this

entry cost is less than her expected gain from entry. In general, the entry equilibrium

need not be unique when potential entrants are asymmetric; applications typically

verify uniqueness in their speci�c case or assume that only one equilibrium is being

played within the data. For both variations on Levin and Smith (1994), Theorem

1 applies as long as each potential entrant's ex ante probability of entry pi satis�es

0 < pi < 1. However, the entry equilibrium may involve pi = 1 for some i, as in

Athey, Levin, and Seira (2011). In this case, it is no longer possible to identify pi

from our English auction data because, e.g., the fraction in (1) is no longer de�ned.

Third, identi�cation extends to entry models with imperfect selection as repre-

sented by Marmer, Shneyerov, and Xu (2013) and Gentry and Li (2014). In a selec-

tive entry model, each potential entrant i observes a signal si of her value vi prior to

entry and enters only if her signal is su�ciently favorable to o�set a �xed entry cost,

i.e. if si > s̄i where s̄i is called an entry threshold. Both the signals and values are

drawn independently across potential entrants. Without loss of generality, signals are

normalized to have a uniform marginal distribution on [0,1], so that 1− s̄i equals the

probability that potential entrant i enters the auction. The distribution of bidder i's

vi conditional on her signal si is Fi(·|si) with support [v, v̄], where higher signal si

leads to stochastically dominant Fi(·|si). Thus, the value distribution conditional on

entry is di�erent from the distribution unconditional on entry, and entry is �selective�.

9



Speci�cally, the distribution of bidder i's values conditional on entry is

F ∗
i (v; s̄i) ≡

1

1− s̄i

∫ 1

s̄i

Fi(v|t)dt.

De�ning Fi(·) ≡
∫ 1

0
Fi(·|s)ds, a su�cient condition for potential entrant i's probability

of entry to satisfy 0 < 1 − s̄i is that there exists a signal si ∈ (0, 1) such that∫ (∫ v

v
(v − t)d

∏
j ̸=i Fj(t)

)
dFi(v|si) > c, i.e., the expected pro�t of entry given si

would be greater than the entry cost even if all N − 1 potential competitors always

entered regardless of signal. A su�cient condition for 1 − s̄i < 1 is that there exists

a signal si ∈ (0, 1) such that
∫
(v − r)dFi(v|si) < c, i.e., the expected pro�t of entry

given si would be less than the entry cost even if no other bidders entered the auction.

As these are su�cient rather than necessary conditions, 0 < s̄i < 1 can well occur

even if these conditions are not met.

We can translate this auction model in the manner shown in Proposition 1, now

replacing the entry probability `pi' with 1− s̄i and replacing the entrant's value dis-

tribution `Fi(·)' with F ∗
i (·; s̄i). That is, the distribution of auction prices and winner

identities generated by this English auction model is equivalent to that generated by a

model in which all N potential entrants `enter' the auction but now draw a value from

the adjusted distributionHi(·) = [s̄i+(1−s̄i)F
∗
i (·; s̄i)]. Then, by Theorem 1, the entry

threshold s̄i and conditional distribution F ∗
i (·; s̄i) are identi�ed from observations of

the auction price, identity of the winning bidder, and set of potential entrants. Once

s̄i and F ∗
i (·; s̄i) are identi�ed in this way, we can then employ the methods of Gentry

and Li (2014) directly to identify remaining primitives of the selective entry model.

For example, the unconditional joint distribution of values and signals for each bidder

i, Fi(v, s), is additionally identi�ed provided an instrument that exogenously shifts

the entry threshold s̄i. Gentry and Li (2014) provide a detailed exposition on this

step, which I do not repeat here. Meanwhile, if the entry probability 1 − s̄i = 1 for

some i, it is no longer possible to apply Theorem 1, analogously to the pi = 1 scenario

of the Levin and Smith (1994) model.

Fourth, consider the perfectly selective entry model of Samuelson (1985) in which

each potential entrant is perfectly informed about her value prior to her entry decision

and enters the auction if vi ≥ ṽi, where ṽi is her entry threshold. In the symmetric

case, Theorem 1 allows for identi�cation of F (·) on [ṽ, v̄]. In the asymmetric case, the

entry thresholds may di�er among potential entrants, leading to di�erent value sup-
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ports conditional on entry. This violates the mutually absolutely continuous condition

of Nowik (1990), so Theorem 1 does not apply.7

Finally, consider consumer search for a loan as in Allen, Clark, and Houde (2014),

which they model as an English auction. Consumers have a marginal cost of search

e�ort that is publicly observed by all parties. Allen, Clark, and Houde (2014) do not

specify why it is publicly observed; it could be because it is a function of observ-

able characteristics. Consumers with lower search costs choose higher search e�ort.

Consumers do not choose the number of quotes directly, but higher search e�ort

stochastically increases the realized number of quotes.8 Lenders are ex ante identical,

and their idiosyncratic cost shocks are drawn independently only after being included

in the set from which the consumer obtains quotes, leading to non-selective entry

similar to Levin and Smith (1994). Thus, we could model each potential lender as

being included in the quote set with probability p, which is decreasing in consumer

search cost, a function of observed covariates. Then Theorem 1 would apply.

4 Concluding remarks

This paper studies identi�cation of entry probabilities pi and value distributions Fi(·)
given the constraints of English auction data. When it comes to identi�cation of the

entry model primitives that generate pi, the literature shows that knowledge of pi

can be used to subsequently identify primitives of the speci�c entry model involved.

For instance, in the symmetric Levin and Smith (1994) model, entry into the auction

incurs an entry cost c, representing expenditures such as the cost of evaluating the

auction item, developing a valuation, and (physically) participating in the auction. At

equilibrium values of p, each potential entrant must be indi�erent between entering

or not. If we let Π(p) denote a potential entrant's ex ante expected gain from entering

the auction given p, equilibrium of the entry model requires the zero-pro�t condition

Π(p)− c = 0. (2)

The ex ante expected gain of entry Π(p) is easily computed given F (·) and p, so the

7If the respective value supports of each potential entrant conditional on entry were known,
repeated application of Theorem 1 on segments of the full support could perhaps be shown to
restore identi�cation in some cases, but this is left to future research.

8Allen, Clark, and Houde (2014) restrict the realized number of quotes to be either 2 or N . We
could extend this to allow any number of quotes according to a binomial distribution.
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entry cost c is identi�ed from the equilibrium condition above. Empirical applications

that identify entry costs from entry probabilities using this approach include Li and

Zheng (2009), Athey, Levin, and Seira (2011), Krasnokutskaya and Seim (2011), and

Li and Zheng (2012), among others. Selective entry models such as Gentry and Li

(2014) also identify bidders' entry costs through a zero-pro�t condition resembling (2).

Similarly, consumer search applications also rely on entry probabilities and resulting

entrant distributions to identify search costs; see e.g. Salz (2022) and Cuesta and

Sepúlveda (2019).

When it comes to estimating the value distributions identi�ed according to Section

2, one could approximate Fi(·) with sieves and use a sieve extremum estimator. For

example, Kong (2020) uses a sieve maximum likelihood estimator for this purpose in

an English auction application with the data limitations posited in this paper. See

Komarova (2017) for properties of sieve extremum estimators in k-out-of-n systems

and Chen (2007) for general properties of sieve estimators.

Appendix

Proof of Proposition 1

Proof. Let [N ] ≡ {1, ..., N} and let P(X) denote all the subsets of set X. De�ne

Sc\{i,j} ≡ {A ∈ P([N ] \ {i, j}) | |A| = c}, the set of all subsets of [N ] of cardinality

c that exclude elements i, j. In model 1, the probability density of auction price

t ∈ (r, v̄] and winning bidder i is equal to

pi[1− Fi(t)]
∑
j ̸=i

pjfj(t)N−2∑
c=0

 ∑
A∈Sc\{i,j}

(∏
ℓ/∈A

(1− pℓ)
∏
m∈A

pmFm(t)

)
 . (A.1)

This expression sums across the probability densities that arise under each of the

possible realizations of the set of entrants. The �rst summation operator sums across

the possible identities of the second highest bidder j, which must exist since t > r. The

second summation operator sums across the possible number c of entrants excluding

i and j, which can be as low as zero and as high as N − 2, corresponding to the

scenario that all potential entrants enter. The third summation operator sums across

the possible sets of entrant identities, excluding i and j, with cardinality c.

Label each element of [N ]\{i, j} as k1, ..., kN−2. The set of all subsets of [N ]\{i, j},

12



N−2⋃
c=0

Sc\{i,j}, can be divided into subsets that exclude k1 as an element and those that

include it. In particular,

N−2⋃
c=0

Sc\{i,j} =

{
N−3⋃
c=0

Sc\{i,j,k1}

}⋃{
A ∪ {k1} | A ∈

N−3⋃
c=0

Sc\{i,j,k1}

}
.

A simple analogy is that the subsets of {1, 2} can be divided into those that exclude 1

and those that include it as P({1, 2}) = {∅, {2}}∪{{1}, {1, 2}} = {∅, {2}}∪{A∪{1} |
A ∈ {∅, {2}}}. Using this, and given independence across potential entrants, (A.1)

can be rewritten as

pi[1− Fi(t)]
∑
j ̸=i

[
pjfj(t)

[
(1− pk1) + pk1Fk1(t)

]
×

N−3∑
c=0

{ ∑
A∈Sc\{i,j,k1}

(∏
ℓ/∈A

(1− pℓ)
∏
m∈A

pmFm(t)
)}]

,

(A.2)

where the expression [(1 − pk1) + pk1Fk1(t)] sums across the scenarios in which k1 is

excluded from the set of entrants and the scenarios in which it is included, and the

second line of (A.2) sums across all the possible entry scenarios of potential entrants

other than i, j, and k1. Next,
N−3⋃
c=0

Sc\{i,j,k1} can analogously be divided into subsets

that exclude k2 as an element and those that include it as

N−3⋃
c=0

Sc\{i,j,k1} =

{
N−4⋃
c=0

Sc\{i,j,k1,k2}

}⋃{
A ∪ {k2} | A ∈

N−4⋃
c=0

Sc\{i,j,k1,k2}

}
.

Using this, (A.2) can be rewritten as

pi[1− Fi(t)]
∑
j ̸=i

[
pjfj(t)

( k2∏
k=k1

[
(1− pk) + pkFk(t)

])
×

N−4∑
c=0

{ ∑
A∈Sc\{i,j,k1,k2}

(∏
ℓ/∈A

(1− pℓ)
∏
m∈A

pmFm(t)
)}]

.
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Repeated application of this procedure for the remaining elements k3, ..., kN−2 results

in

pi[1− Fi(t)]
∑
j ̸=i

[
pjfj(t)

∏
k ̸=i,j

[
(1− pk) + pkFk(t)

]]
. (A.3)

De�ne the derivative of Hi(·) as hi(·) = pifi(·), where fi(·) is the density of Fi(·).
Simple algebra gives pi[1− Fi(t)] = 1−Hi(t). So (A.3) equals

(1−Hi(t))
∑
j ̸=i

(
hj(t)

∏
k ̸=i,j

Hk(t)

)
.

But this expression equals the probability density of auction price t ∈ (r, v̄] and

winning bidder i under model 2.

Finally, consider the special events of the auction price (or the placeholder `auction

price' referenced in model 1 of the proposition) equaling v or there being no winner

(i.e., the auction item failing to sell). In model 1, the probability of `auction price' v

and winning bidder i is the probability that only potential bidder i enters, pi
∏

j ̸=i(1−
pj), and the probability of no winner equals that of no potential bidders entering,∏N

j=1(1 − pj). In model 2, the probability of `auction price' v and winning bidder

i is the probability that bidder i bids higher than v while all other bidders bid v,

pi
∏

j ̸=i(1 − pj), and the probability of no winner is the probability that all bidders

bid v,
∏N

j=1(1− pj). This completes the proof.
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