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Abstract

This paper empirically analyzes the performance of one of the world's most de-

veloped water exchanges, which operates as a primitive limit order market. Upon

modeling participants' choice of order price and order type, I identify their latent

value distributions from observed orders and trades. The model �exibly allows for

dynamics, risk aversion, and default behavior. Counterfactual simulations suggest

the observed exchange attains substantially lower trade surplus than the benchmark

of periodic uniform-price market clearing. Droughts exacerbate the gap in surplus

per unit traded between the observed exchange and the benchmark. I assess the role

of volume frictions, price shading, and temporal dispersion in explaining the gap.
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1 Introduction

According to UN-Water, which coordinates the United Nations' work on water and

sanitation, water is the primary medium through which we will feel the e�ects of

climate change.1 Many countries �face water scarcity as a fundamental challenge to

their economic and social development; by 2030 over a third of the world population

will be living in river basins that will have to cope with signi�cant water stress.�2

As a result, there is growing interest in water reform, particularly in the potential

of water markets to help overcome these problems.3 Drawing on water market data

from Australia, the driest inhabited continent and world leader in market-based water

management,4 this paper investigates one piece of the broader puzzle to be solved:

how the design of the trading mechanism, or market microstructure, impacts water

market outcomes such as the gains from trade and how these impacts interact with

drought. My approach to this question involves a structural analysis of a limit order

market for water which models traders' pricing incentives while �exibly allowing for

dynamics, risk aversion, and default behavior.

The spot market for water in Australia, particularly in the southern part of its

Murray-Darling river basin (southern MDB), is large in terms of trade volume, mon-

etary value, and participation. In the southern MDB, �allocation trades,� which refer

to spot trades of water, totaled 5527 gigaliters in the 2019-2020 �nancial year.5 This

amounted to over 40% of the total nominal volume of water allocatable to all wa-

ter license holders, known as entitlements on issue, which was about 13000 GL in

the southern MDB.6 The monetary value of allocation trades across Australia was

708 million AUD in 2019-2020, when prices were particularly high due to one of the

worst droughts on record, with the southern MDB comprising 93% of all volume.7 In

terms of participation, around 78% of irrigation farmers, responsible for the majority

of water consumption, had conducted at least one water allocation trade by 2015.8

Indeed, allocation trades are an important source of water for irrigators; only a small

1https://www.unwater.org/water-facts/water-and-climate-change.
22030 Water Resources Group (2009)
3National Water Commission (2011), Australia.
4Ibid.
5Bureau of Meteorology (2021), Australia.
6Ibid. Depending on water availability, the actual volume allocated may be lower than the

nominal entitlements on issue.
7Australian Competition and Consumer Commission (2021) and Bureau of Meteorology (2021).
8Australian Competition and Consumer Commission (2021).
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proportion of irrigators across the Basin use more sophisticated derivative products

such as leases or forward contracts.9 In 2018-2019, the average dairy, horticulture,

and rice farm relied on allocation trades for 41%, 39%, and 23% of their water use,

respectively.10 These statistics illustrate that Australian water markets are well de-

veloped compared to that of other countries. At the same time, they are still at a

relatively formative stage compared to markets for other goods and services,11 making

the study of these markets particularly interesting.

One of the main media for allocation trades in Australia are online exchanges,

which operate as simple versions of a limit order market. To trade, a buyer or seller

(trader) places either a limit order or a market order. Taking the buyer's perspective

for expositional clarity, placing a limit order means the buyer lists the price and

volume at which they want to buy, in the uncertain hope that a willing seller arrives

to ful�ll those terms. Placing a market order means the buyer selects an existing

seller's limit order to ful�ll, for guaranteed trade. There is no market maker; each

distinct trade involves one buyer and one seller and can happen at a di�erent price

from other trades occuring at the same time. Thus, the water exchange features

continuous, bilateral exchange at discriminatory prices. State approval authorities

collect a �at fee per trade, where sourcing a purchase from multiple sellers would

constitute multiple trades. Moreover, it is strictly optional for traders to allow their

order volume to be split into smaller trades. As a result, I �nd evidence of trade

frictions related to bilateral volume mismatch, which I refer to as �bilateral frictions.�

I also observe that limit orders with not very competitive prices still have a decent

chance of becoming a trade. This provides stronger incentives for traders to list prices

that are distant from their true valuations, which I refer to as �price shading.�

The goal of assessing counterfactual exchange design requires recovery of the latent

distribution of buyers' willingness to pay (�values�) and sellers' willingness to accept

(�costs�) from observed data. Meanwhile, general limit order markets are complex

dynamic games of which the solution is analytically intractable, and much is still

unknown despite a long history of research in the �nance literature.12 This paper

9Ibid.
10Ibid. The remainder of farms' water use would be supplied by the water licenses (�entitlements�)

they own. See Section 2.1 about entitlements.
11National Water Commission (2011), Australia.
12Per Parlour and Seppi (2008), �there is still much we do not know about limit order markets.

[...] Only very stylized environments have been studied thus far. Joint decisions about order ag-
gressiveness and quantity have not been fully modelled [...].� Ro³u (2009) explains that �one of the
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does not provide a full equilibrium theory of limit order markets but focuses on

deriving key identifying equations that exploit the data. In this vein, I model a

trader's best-response action on the exchange given her value for water. Speci�cally,

I model the trader's choice between placing a limit order and a market order and,

conditional on placing a limit order, the choice of a limit order price. Again taking

the buyer's perspective, buy limit orders with higher prices are more likely to be

executed because sellers prefer higher prices. Thus, a buyer's optimal limit order

price balances the marginal bene�t of this increased execution probability against

the marginal cost of paying a higher price conditional on execution. A key input to

this tradeo� is the probability of limit order execution as a function of price, which

is observed empirically. The buyers' optimization in light of this tradeo� generally

leads them to shade their prices, meaning their limit order prices are lower than their

latent values. Also, buyers with higher values list higher limit order prices. When

it comes to the choice between market and limit orders, traders follow a threshold

strategy: buyers place a market order if their value exceeds an indi�erence threshold

and place a limit order otherwise. This is because the guarantee of trade o�ered by

market orders is more valuable for higher-value buyers.

I extend this baseline model to allow dynamics, risk aversion, taxes and fees, and

default behavior to a�ect traders' actions. First, dynamics arise with the possibility

that traders may revise their unexecuted limit orders in a repeat attempt to trade.

This introduces a positive continuation value of failing to trade, causing the buyer to

behave as if her value is lower. Second, more risk averse traders engage in less price

shading because they have a lower tolerance for the risk of failing to trade. Third,

taxes and fees cause traders to behave as if their costs are higher (or values lower)

than in the absence of taxes and fees. Finally, I allow for the possibility that a portion

of traders may skip the optimal limit versus market order decision and place a limit

order by default. This is empirically motivated by a market norm in which sellers

tend to place limit orders.

The key to identifying the buyers' latent value distribution and sellers' latent cost

distribution is the traders' �rst-order condition for limit order pricing per the model

discussed above. This �rst-order condition takes as an input the empirical probability

of limit order execution as a function of limit order price, in the spirit of Guerre, Per-

rigne, and Vuong (2000). The additional complexities of identifying the full model,

reasons for the scarcity of models of order-driven markets is the sheer complexity of the problem.�
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such as those arising from traders' selection into market versus limit orders and the

dynamics of order revision, are formally addressed to establish nonparametric identi�-

cation of the value and cost distributions. When it comes to risk aversion, I delineate

the range of risk aversion levels that cannot rationalize the data if the supports of

the value and cost distributions are non-negative. I then conduct the remainder of

my analysis over a range of risk aversion levels that can rationalize the data. Since

risk aversion a�ects the amount of traders' price shading, this �exible approach has

the advantage of yielding a robust analysis across varying levels of price shading. My

estimation procedure closely aligns with the identication argument above but also

accounts for heterogeneity in the market environment by conditioning on a vector of

covariates parametrically. These covariates include volume, water fundamentals such

as the amount of water stored in the major lakes as well as descriptors of exchange

conditions at the time the trader's action took place.

Upon estimating the latent value and cost distributions, I simulate the counterfac-

tual benchmark of periodically crossing latent supply and demand. This benchmark

di�ers from the observed exchange in that it temporally aggregates traders, it clears

the market at a single market-clearing price, volumes are pooled so that trade is

multilateral, and there is no price shading by construction. Comparing the observed

exchange to the benchmark at the trade level, I �nd that the sorting of which buyers

and sellers get to trade is di�erent. Relatively low-value buyers and high-cost sellers

are able to trade on the observed exchange by exploiting the time and price disper-

sion available there, and these can block more e�cient trades involving higher-value

buyers or lower-cost sellers.

Next, the comparison of total trade surplus depends on traders' risk aversion

level. If traders' risk aversion were su�ciently high such that there was almost no

price shading in the data, then the benchmark would yield about 18% higher surplus

over the sample period. If traders' risk aversion were lower such that they engaged in

meaningful price shading, then the surplus gap would be larger, exceeding 50% at the

lowest risk aversion level that can rationalize the data. I �nd that periods of drought

are when the observed exchange falls especially short in terms of trade surplus per unit

(megaliter). This is because value heterogeneity is especially high during droughts,

so there are higher per-unit gains to be had from sorting the highest value buyers

and lowest cost sellers into trade. To supplement �ndings from the benchmark, I also

simulate a closely-related dominant strategy double auction adapted from McAfee
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(1992), which yields qualitatively similar results.

To assess the role of bilateral frictions, price shading, and temporal dispersion

in explaining the surplus gap between the observed exchange and the benchmark, I

additionally simulate counterfactual exchanges that implement one-megaliter splits

of the sellers' volume. This allows buyers to �ll their order volume with the cheapest

units available on the exchange, regardless of how many di�erent sellers these units

come from and without having to buy the entirety of any seller's volume. Even holding

limit order prices �xed as observed, I �nd that eliminating bilateral frictions in this

way closes about half of the gap between the observed exchange and the benchmark

while preserving a continuous-time market. This o�ers a practical, incremental policy

option that could meaningfully improve market e�ciency.

Related literature

This paper relates to the economics literature studying formal water markets and

especially its intersection with the empirical tools of industrial organization. In the

southern MDB, Rafey (2023) uses a production function approach to value the water

market, quantifying the increase in agricultural output caused by the existence of wa-

ter trading. In mid-twentieth century Spain, Donna and Espín-Sánchez (2018, 2023)

study the frictions and performance of English auctions for water among farmers.

Meanwhile, where formal water markets are relatively weak or lacking, such as in

California, researchers have estimated the prospective gains that could be achieved

if trade barriers were eliminated (e.g., Bruno and Jessoe (2021); Hagerty (2022)).

The large literature on the broader economic, legal, policy, and scienti�c dimensions

of water markets around the globe are surveyed by Kaiser and McFarland (1997),

Chong and Sunding (2006), and Debaere et al. (2014) among others. I contribute

to this literature by empirically analyzing the impact of exchange design, or market

microstructure, on market outcomes. I do this by exploiting not only data on realized

water trades but also data on traders' market actions�their buy and sell orders and

order prices�some of which result in trade and some of which do not.

In structurally analyzing a limit order market, this paper relates to the pioneering

work of Holli�eld, Miller, and Sandås (2004) and Holli�eld, Miller, Sandås, and Slive

(2006) which study the Stockholm Stock Exchange and Vancouver Stock Exchange,

respectively. The latter evaluates that the Vancouver Stock Exchange achieves about

90% of the maximum possible gains from trade. My approach is also related to work

on structural estimation of auction models. Identifying and estimating players' latent
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values or costs through empirical expressions of their �rst-order condition, rather

than through numerical simulation of potentially intractable equilibria, has become

a workhorse of the auction literature since Guerre, Perrigne, and Vuong (2000). A

related approach has been fruitfully employed to study electricity markets (e.g., Wolak

(2000); Hortaçsu and Puller (2008); Reguant (2014)).

When it comes to exchange design, the �nance literature has debated the merits

of continuous markets versus periodic (batch) uniform-price auctions in the context

of securities exchange (e.g., Madhavan (1992)).13 Some high level insights from this

literature include that temporal consolidation may improve e�ciency at the cost of

market inaccessibility between batches and that there is no one-size-�ts-all solution;

e.g., temporal consolidation may be more helpful for thinly traded securities.

The paper is organized as follows. Section 2 describes the institutional background

of water exchange in Australia, the data, and suggestive evidence of market ine�cien-

cies. Section 3 presents the baseline model and establishes identi�cation of the model

primitives. Section 4 discusses model extensions and describes the estimation proce-

dure. Section 5 discusses empirical results. Section 6 assesses the performance of the

observed exchange relative to the counterfactual benchmark of periodic uniform-price

market clearing and studies the factors contributing to the gap. Section 7 concludes.

The appendix collects all proofs.

2 Water exchange

2.1 Institutional background

This section provides some institutional background for water exchange in Australia,

summarizing information gathered from the Australian Productivity Commission

(2003), National Water Commission (2011), Goesch, Donoghoe, and Hughes (2019),

the Australian Competition and Consumer Commission (2021), and the Murray-

Darling Basin Authority website. The Murray-Darling Basin is a large area of south-

eastern Australia where water �ows through a system of interconnected rivers and

lakes. The southern region of this basin or southern MDB, which incorporates the

River Murray and its various tributaries, is considered one of the most sophisticated

13Batch auctions have also been proposed more recently as a policy response to high-frequency
trading. See Budish, Cramton, and Shim (2015), Wah and Wellman (2013), Farmer and Skouras
(2012).
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water markets in the world. Water is traded under a cap-and-trade system as fol-

lows. The Murray-Darling Basin Agreement limits total water extraction, setting

aside water for conveyance�water needed to �run the river� or deliver water without

it evaporating or seeping into the riverbed�critical human water needs, and a con-

veyance reserve set aside for the next year.14 Only after setting aside these volumes

is remaining water allocated to water license holders, who may trade the water.

A water license or �entitlement� is a perpetual right to access an annual volume

of water, subject to water availability. These entitlements were initially allocated by

previous decisions of government, and new entitlements are generally not available

for issue.15 Historically tied to land, water access rights in the Basin are now gener-

ally separated from land ownership, though there are some exceptions. �Entitlement

trade� refers to the trade of these water licenses, which involves transferring a per-

petual right. Meanwhile, �allocation trade� refers to the one-time trade of a speci�c

volume of water, as opposed to trading a license. This paper focuses on allocation

trades, the trade of water.

As reported by Goesch et al. (2019), agriculture comprises around 70% of extrac-

tions for consumptive water use in Australia. This is mainly used for irrigation. As

such, irrigation farmers known as �irrigators� are the main participants in Australian

water markets, constituting the majority of commercial allocation trades. Irrigators'

values for water exhibit substantial heterogeneity, both across and within crop types

(Rafey (2023)). Other market participants include environmental water managers,

irrigation infrastructure operators, and investors among others. The southern MDB

is divided into 15 trading zones, often de�ned as areas within which trade can freely

occur because users in a zone are subject to the same jurisdiction and draw water

from the same source point, such as a particular storage or water course. Trades

within a zone, known as intra-zone trades, do not usually cause physical movement

of water. Rather, the traded water exits the seller's �allocation bank account� and

enters the buyer's �allocation bank account�. River operators do not generally re-

lease water to meet individual orders but manage bulk releases to meet forecasted

aggregate demand based on historical usage data, weather, and other factors. Trade

between zones is possible but subject to inter-zone trading rules, such as trade limits

based on hydrological constraints. An irrigator is generally free to use the water in

14www.mdba.gov.au/water-management/allocations-states-mdba/water-critical-human-needs.
15Productivity Commission (2003).
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their account at any time, though there are state rules governing the carryover of

water past the end of the water year, such as a volume limit and a 5% deduction

to account for evaporation losses in the state of Victoria. The water year begins

on July 1st and ends on June 30th. Negative account balances are illegal and met

with enforcement action,16 supported by a comprehensive network of water meters to

monitor irrigators' water use.17

Buyers and sellers are free to �nd a trade partner and set their trade price and

volume in any manner they choose. With increased internet access, online exchanges

have become one of the main avenues for trade. The provider of this paper's data

sample estimates that over 60% of trades are now formed online, though no o�cial

statistics are available. Participants also trade by calling brokers or may trade with

a friend without any intermediary involvement. Once a trade is formed, however,

details of the transaction must be lodged on trade forms with state-owned approval

or registration authorities. Nonetheless, information on trading activity is highly

fragmented and incomplete; there is �currently no single entity responsible for, or

capable of, gathering the necessary data.�18 Moreover, my research question requires

information on the pre-trade actions of buyers and sellers�such as information on

buy and sell orders, not all of which become trades�which is not collected by state

authorities. Given the absence of data necessary to cover the entire market, I take

a focused approach, studying the largest water exchange in one of the most actively

traded geographic zones.

The exchange operates as follows. Both buyers and sellers, which I refer to col-

lectively as traders, may post listings or �orders� on the exchange which list the price

(per megaliter) and volume of water (megaliters) they wish to trade. These listings

are visible to all traders. The listings do not reveal identities; the exchange operates

as a blind market. If a buyer comes along and chooses one of the existing sell list-

ings to ful�ll, or a seller comes along and chooses one of the existing buy listings to

ful�ll, this results in a trade at the price and of the volume listed in the listing. So

traders face a choice between ful�lling an existing listing posted by another trader,

for guaranteed trade, or posting their own new listing in the uncertain hope that a

counterparty will come along that wants to ful�ll it. I use the term �market order�

16www.g-mwater.com.au/customer-services-resources/water-use-compliance/unauthorised-water-
take-exceeding-your-water-entitlement.

17National Water Commission (2011).
18Australian Competition and Consumer Commission (2021).
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to refer to the former action and the term �limit order� to refer to the latter action. I

will refer to this market design as a �limit order market.� Conditional on trade, sell-

ers pay income taxes19 on their sales revenue as well as a 2.5% fee to the exchange.

Buyers pay a �at trade approval fee per trade to state authorities which was 47.50

AUD during my sample period.

The most familiar example of a limit order market is a stock exchange, but the

reader should not infer that this water exchange shares any of the features of familiar

stock exchanges other than what is described in the preceding paragraph. The water

exchange is a pure limit order market with no market maker. It features an open limit

order book, meaning each trader can observe the set of all existing listings, and they

can choose which listing to ful�ll if any. As a result of this market structure, each

trade can happen at a di�erent price even at a given moment in time. Volumes are

not pooled across traders; all the water being transferred in a single trade is sourced

from one seller and goes to one buyer, so that each trade is truly bilateral. It is

strictly optional for traders to allow their limit order volume to be split into smaller

trades, and such trades do not appear prevalent in my data. This is partially a

consequence of the �at trade approval fee mentioned above which may in turn re�ect

path dependence in market development given the historically bilateral nature of

traditional water brokerage. To summarize, the water exchange features continuous,

bilateral exchange at discriminatory prices.

2.2 Data

The water exchange I study describes itself as Australia's largest independent water

exchange. I observe the price, volume, start time, and end time of all buy and sell

limit orders on the exchange, as well as the price and volume of all trades and the

time the trade was approved by the state. The dataset covers the time period of

April 2020 through the end of September 2021. This timeframe covers periods of

both drought and relative plenty; to elaborate, water storage levels in Lake Hume, a

reservoir impounded by a major dam across the River Murray, was at 13% of total

capacity at the beginning of April 2020 and was at 97% of total capacity at the end

19According to OECD.Stat, the average personal income tax rate in Australia in 2020 was 24.1%
while the corporate income tax is 25% for small and medium businesses and 30% for other companies.
I use 24% for the income tax rate in my empirical analysis.
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Table 1: Summary statistics of buy and sell orders in the sample

count mean sd median min max
sell orders
price (AUD/ML) 2,182 228 140 200 55 950
volume (ML) 2,182 61 101 30 1 1,000
duration (days) 2,182 8 12 3 0 130

buy orders
price (AUD/ML) 631 143 65 120 40 418
volume (ML) 631 131 165 87 1 1,000
duration (days) 631 6 7 3 0 46

of September 2021.20 This variation will allow me to study the interaction of drought

and exchange design in Section 6. The trading zone I study is zone 7, located on

the Victorian side of the River Murray and one of the most actively traded zones.

Due to the frictions associated with inter-zone trade, 90% of all allocation trades of

which the source is zone 7 are intra-zone. I limit my analysis to intra-zone trades

only. Within a zone, water is a commodity, i.e. one seller's water is no di�erent from

another seller's, because all water is drawn from the same source point and trade does

not cause physical movement of water.

Though the water exchange is very developed by water market standards, it is

thinner and slower than more familiar limit order markets for other goods. On the

water exchange and for the trading zone I study, there are on average 6 limit orders

per day, including both buy and sell limit orders. The mean duration between the

start date and end date of a limit order is 8 days, though some limit orders have a

duration as long as a few months. A large majority of limit orders, 78%, are sell

limit orders, so the most representative path to trade on this exchange is for a seller

to place a limit order and for a buyer to ful�ll it through a market order. Table 1

provides additional descriptive statistics of the buy and sell orders.

When it comes to explaining water prices, the amount of water stored in major

dams and lakes has a lot of explanatory power, as illustrated in Figure 1. In this

�gure, each cross marks a trade on the exchange. The x-axis shows the date of

the trade and the left y-axis shows the log deviation of the trade's price from the

historical calendar-day mean.21 The solid line, read by the right y-axis, displays the

20Australia Bureau of Meteorology, https://mdbwip.bom.gov.au/175/#4.6/-31.5/147
21I compute the historical calendar-day mean price using trades during 2008�2019 from the relevant

zone. Speci�cally, a kernel regression of price on the day number of the water year�where July 1st
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Figure 1: Water storage and prices

Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021
-1.5

-1

-0.5

0

0.5

1

p
ri
c
e

 p
e

r 
M

L
, 

lo
g

 d
if
fe

re
n

c
e

 f
ro

m
 h

is
to

ri
c
a

l 
m

e
a

n

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

w
a

te
r 

s
to

ra
g

e
 (

G
L

),
 d

if
fe

re
n

c
e

 f
ro

m
 h

is
to

ri
c
a

l 
m

e
a

n

trades on the exchange

deviation of total relevant water storage from its historical calendar-day mean.22 The

respective historical calendar-day means capture expected seasonal �uctuations, while

deviations from these means capture drier-than-usual or wetter-than-usual conditions

for the time of year. Figure 1 shows a strong negative correlation between deviations

in water storage volumes and water prices during the sample period. Section 5.1

performs regression analyses of prices with a longer list of explanatory variables.

The data has the following limitations. First, trader identities are not provided,

not even in anonymized form. Second, the data does not provide o�cial linkages

between buy and sell orders and �nal trades. The �lack of linkage between exchange

[...] data and Basin State register data� on trades is not speci�c to my data sample but

a general limitation that has been noted by the Australian government.23 I will infer

the linkages by matching the price, volume, and end dates of the buy and sell orders

with the price, volume, and approval dates of the trades, allowing for a reasonable

delay between the two dates as state approval of lodged trades is not instantaneous.

Naturally, not all limit orders are executed, so my analysis considers �revisions�

of limit orders, in which a trader replaces an unexecuted limit order with a new limit

order for that volume. Empirically, I search for instances in which a limit order ends

unexecuted and subsequently a new limit order appears on the same day, for the same

volume but with a di�erent price. As I do not observe trader identities, there is no

is day 1�is used to predict the expected price for each month-day combination.
22I defer a detailed description of the storage variable to Section 5.1.
23Australian Competition and Consumer Commission (2021).
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guarantee that all found instances are indeed revisions. Nonetheless, I will treat them

as such in my analysis to account for the positive expected value of order revision in

a manner that is as data-driven as possible.

2.3 Suggestive evidence of market ine�ciencies

Bilateral frictions I examine every instance in which a buyer placed a market

order, resulting in execution of a sell limit order. I �nd that in 73% of these instances,

the buyer did not choose the sell listing with the lowest per-unit price available (the

�low ask�) but traded with another listing o�ering a di�erent volume than the low-

ask listing. This demonstrates that there are trade frictions associated with the

bilateral, as opposed to multilateral, nature of water exchange. In a multilateral

trade mechanism that freely splits and pools volumes, the buyer would �ll her desired

volume with the cheapest units available on the exchange, regardless of how many

di�erent sellers these units come from and without having to buy the entirety of any

seller's volume. Then the low-ask units would always be �rst to be included in a

market order purchase. On the observed exchange, however, the low-ask listing is

often skipped. Frictions of this sort reduce e�ective market thickness. I refer to these

as �bilateral frictions.�

Incentives to shade limit order prices An important statistic that bears directly

on traders' pricing incentives is the probability of limit order execution as a function

of limit order price. In Figure 2, the x-axis displays the log di�erence between the

price per-ML of each sell limit order and the lowest available sell limit order price

at the time that limit order was placed. The latter price is meaningful as the lowest

competing price the seller would have seen before choosing a price for her own limit

order. I refer to this x-axis variable as relative price. On the y-axis, all the observed

limit orders, marked by crosses, are at either 0 or 1, with 0 indicating that the limit

order was not executed and 1 indicating that it was. Finally, the curve in the �gure

displays a kernel regression of limit order execution on relative price and can be

interpreted as the predicted probability of order execution given the relative price of

the order. Focusing on where data points are dense, roughly between the 1st and

99th percentiles of relative price or x ∈ [−0.13, 1.07], the predicted Pr(execution) is

decreasing in the seller's relative limit order price as expected; buyers prefer lower

prices. What is surprising is that the slope of this decrease is rather �at; a sell limit
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Figure 2: Sell limit order price and execution probability
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order with a per-unit price 20% higher than the lowest available price still has a

roughly 40% probability of eventual execution. The �atter is this slope, the greater

is the incentive for sellers to choose a higher limit order price because the associated

loss in Pr(execution) is smaller. I refer to traders listing prices di�erent from their

true valuation as �price shading.� Even when there is room for a Pareto-improving

trade between a buyer and seller, price shading can prevent it from happening. The

observed exchange exhibits strong incentives for traders to shade their limit order

prices.

3 Model and identi�cation

In order to ultimately assess counterfactual exchange design, I set an intermediate

goal of recovering the latent distribution of buyers' willingness to pay and sellers'

willingness to accept from observed data. In service of this intermediate goal, I

model a trader's pricing decision conditional on order volume as a best response to

the market she observes. Let x be a �nite-dimensional vector representing current

market conditions, such as water storage levels, the season, the limit order book,

and recent trade activity, as well as order volume. I refer to these collectively as

�covariates� and describe them in detail in Section 5.1. Conditioning on relevant

elements of x is implicit in this section unless explicit conditioning is needed for

clarity. Section 4 discusses extensions of the baseline model to incorporate features
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such as risk aversion and taxes and fees.

3.1 Baseline model of limit order pricing

Buyers and sellers (traders) arrive exogenously to a market for water. I initially focus

on buyers, returning to sellers in Section 3.4. Conditional on order volume mi, buyer

i obtains value vi per unit upon receiving the water, with vi distributed according to

Fb(·|xi) with a b subscript for the buyer.

Upon arrival, buyer i either places a buy listing at price pi or ful�lls an existing sell

listing. Ful�lling a sell listing involves buying from the seller who placed the listing

at the terms stated in the listing. In this paper, I refer to placing one's own listing as

a �limit order� and ful�lling an existing listing as a �market order�. While a market

order always results in a trade, a limit order becomes a trade only if a counterparty

decides to ful�ll it. Thus, limit order execution is not guaranteed. I refer to the set

of all live buy and sell limit orders not yet executed as the �limit order book�.

Let Pb(pi|xi) denote the probability that a buy limit order with price pi is exe-

cuted conditional on covariates xi. This probability, an empirically observed object,

is an important input to the buyer's best-response problem. I make the following

assumptions regarding Pb(pi|xi).

Assumption 1. The execution probability Pb(·|x) for a buy limit order satis�es

(i) Pb(p|x) is strictly increasing in p.

(ii) Pb(p|x)/P ′
b(p|x) is strictly increasing in p.

(iii) Pb(p|x) < 1.

Assumption 1-(i) states that a buy limit order with a higher price is more likely to be

executed. This is because the counterparties�sellers�prefer to receive higher prices.

Assumption 1-(ii) is a technical condition involving the derivative P ′
b(p|x) ≡

∂Pb(p|x)
∂p

.

For example, Assumption 1-(ii) would be satis�ed if Pb(·|x) had a probit shape as

Pb(p|x) = Φ(β0 + β1p + β2x), where Φ(·) is the standard normal cdf and β1 > 0 per

Assumption 1-(i). In that scenario, Pb(p|x)
P ′
b(p|x)

= Φ(β0+β1p+β2x)
β1ϕ(β0+β1p+β2x)

is increasing in p because
Φ(·)
ϕ(·) is an increasing function. The probability Pb(p|x) is likely to have such an S-shape
in p because the execution probability is insensitive to local price changes when p is

extremely low or high (such extreme orders will be executed with probability near

zero or one, respectively), but there is a range of p in between where the limit order
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book is denser and the execution probability responds more steeply to p. Assumption

1-(iii) states that execution of a buy limit order is not guaranteed.24

Choosing a limit-order price with no revision in the future

In Section 3.2, I allow for the possibility that a trader will revise her limit order after

placing it. Here, consider �rst a baseline scenario: the buyer's choice of limit order

price when she believes there will be no revision in the future. I adopt a best-response

approach in the spirit of Guerre, Perrigne, and Vuong (2000).

For reasons that become clear shortly, I use an r subscript in notation for this

scenario: Given her value vr,i and covariates xr,i, buyer i chooses price pr,i to maximize

her expected utility from the order in light of execution probability function Pb(·|xr).

Her maximization problem is

max
pr

Pb(pr|xr,i)(vr,i − pr), (1)

where her objective function is the execution probability times her pro�t conditional

on execution. Di�erentiating the objective function with respect to pr, the �rst-order

condition gives

pr +
Pb(pr|xr,i)

P ′
b(pr|xr,i)

= vr,i. (2)

Thus, rather than submitting a price equal to her value, she will �shade� her order

price so that pr < vr,i. Let p
∗
r(vr,i|xr,i) denote the buyer's optimal price that satis�es

equation (2). By Assumption 1, the left-hand side of equation (2) is strictly increasing

in pr. It follows that p
∗
r(vr,i|xr,i) is strictly increasing in vr,i.

3.2 Limit order pricing with revision

I now allow for the possibility that a trader will revise her limit order after placing

it. The purpose is to identify traders' latent values more accurately by adjusting

for the (possible) continuation value of revision. After the passage of an exogenous,

stochastic interval of time tr since initial order placement, the buyer will revisit her

limit order and, if it has not yet executed, exit the market with exogenous probability

1− r or else revise the price with probability r. Motivated by the data, in which 1.5

percent of unexecuted limit orders seem to be revised more than once, I model traders

24Cohen et al. (1981) show that unless traders monitor a market continuously, the execution
probability of a limit order is less than one no matter how closely it approaches the asking price.

15



revising their limit order up to one time. In this case, the buyer's problem of choosing

a price in the revision stage is represented by (1). The model is generalizable to any

�xed, �nite maximum number of revisions by iterating the revision model up to that

number. The buyer's value for one unit of water at the time of revision is denoted vr,i.

This vr,i has conditional distribution F r
b (·|vi) which is weakly stochastically ordered in

vi so that a buyer with higher vi is weakly more likely to have a higher vr,i. Persistent

values, vr,i = vi, would be a special case of this more �exible setup.

Assumption 2. Distribution F r
b (·|vi) of vr,i is weakly stochastically ordered in vi.

Let Cb(vi, pi|xi) denote the expected pro�t from revising a limit order in the

future, as perceived by the buyer at the time she submits the initial limit order.

The arguments v, p, x are those pertaining to the initial limit order. This Cb(vi, pi|xi)

is analogous to a continuation value and will be an input to the buyer's optimization

problem of choosing p. Mathematically, de�ne Cb(vi, pi|xi) as

Cb(vi, pi|xi) ≡ Etr,i,xr,i,vr,i

[
Pb

(
p∗r(vr,i|xr,i)

∣∣xr,i

)(
vr,i − p∗r(vr,i|xr,i)

)∣∣∣vi, pi, xi

]
, (3)

where vector xr,i represents covariates at the time of revision. The buyer's optimal re-

vision price as a function of her value vr,i is denoted p∗r(vr,i|xr,i), and Pb(p
∗
r(vr,i|xr,i)|xr,i)

is the probability that a buy limit order with price p∗r(vr,i|xr,i) executes.

Assumption 3. Regarding the expected pro�t Cb(v, p|x) of revising a limit order,

(i) The buyer approximates that Cb(v, p|x) = Cb(v|x).
(ii) r|Cb(v

′|x)− Cb(v|x)| < |v′ − v| for all v′ ̸= v.

Assumption 3-(i) means the buyer approximates that her own choice of limit order

price p will not in�uence the evolution of covariates xr to such an extent that it would

a�ect her revision payo� in the future. This is similar to a common assumption made

when studying dynamic auctions on eBay, in which a buyer's continuation value is

assumed not to depend on her previous actions; see, e.g., Backus and Lewis (2020),

Bodoh-Creed et al. (2021), and Hendricks et al. (2021). One rationale in the case of

eBay is that the in�uence of any one bid by one buyer dissipates quickly over time.

Another rationale is that it represents realistic buyer behavior because forecasting

the evolution of the entire market in response to one's individual action is complex

while the gains of doing so for the buyer are small.
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Assumption 3-(ii) means the expected pro�t of future revision, multiplied by the

probability of revision r, is less sensitive to the argument v than is v itself. It is

satis�ed in the following two extreme models of the relationship between vi and vr,i.

First, it is automatically satis�ed if vr,i and vi are conditionally independent with

F r
b (vr|v) = F r

b (vr). In this scenario, Cb(v|x) does not depend on v so Cb(v
′|x) −

Cb(v|x) = 0. Second, the assumption is satis�ed in the opposite scenario of perfectly

persistent values, vr,i = vi.
25 In general, satisfaction of Assumption 3-(ii) depends on

the function Pb(·|xr) and the joint distribution of (vi, vr,i). The next corollary follows

from the previous assumptions.

Corollary 1. ∂Cb(v|x)/∂v ≥ 0.

Choosing a limit-order price accounting for revision in the future

Now, supposing a buyer submits a limit order, consider her choice of price p for the

order. Given her value vi, buyer i chooses price pi to maximize her expected utility

from the order in light of the execution probability Pb(p|x) and accounting for the

possibility of future revision. Her maximization problem is

max
p

Pb(p|xi)(vi − p) + (1− Pb(p|xi))rCb(vi|xi). (4)

If the buyer's limit order is executed, she gets payo� vi − p, and if it is not executed,

she revises the order with probability r, yielding expected payo� Cb(vi|xi) from the

revision. Di�erentiating the objective function with respect to p, the �rst-order con-

dition gives

p+
Pb(p|xi)

P ′
b(p|xi)

= vi − rCb(vi|xi). (5)

This �rst-order condition is similar to equation (2), but the buyer now chooses a

price in light of a pseudo value that equals her value vi less the continuation value

rCb(vi|xi). In other words, since the buyer's expected payo� from an unexecuted

order is now positive, she will behave as if her value is lower by that amount when

choosing a limit order price.

By Assumptions 1 and 3, the left-hand side of equation (5) is strictly increasing

in p and the right-hand side is strictly increasing in v. Therefore, a buyer's optimal

25In this scenario, the expression for Cb(v|x) simpli�es to Etr,xr [Pb(p
∗
r(v|xr)|xr)(v − p∗r(v|xr)) |x ],

so by the envelope theorem, ∂Cb(v|x)/∂v = Etr,xr
[Pb(p

∗
r(v|xr)|xr) |x ] < 1 where the inequality

follows from Assumption 1-(iii). Then r|
∫ v′

y=v
∂Cb(y|x)

∂y dy| < |
∫ v′

y=v
1dy|, satisfying Assumption 3-(ii).
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choice of limit order price p is strictly increasing in her value v.

Corollary 2. The buyers' best-response price function p∗(v|x) for a limit order is

strictly increasing in v.

3.3 Choosing between a market order and a limit order

Previous sections considered the buyer's choice of price given that she places a limit

order. Now consider the buyer's choice between placing a market order and a limit

order. A rational buyer would compare the pro�t of the market order to that of a

limit order and choose the one whose (expected) pro�t is higher.

Suppose a buyer chooses a market order with price ℓ and volume m. Conditional

on m, let buyer i obtain value vi per unit upon receiving the water. Execution of

market orders is guaranteed by de�nition, so the buyer's per-unit pro�t from this

market order is

M(vi, ℓ) ≡ vi − ℓ. (6)

For the buyer to have placed this market order, it must be that M(vi, ℓ) exceeds the

expected pro�t from placing a limit order for m. To be precise, the buyer's expected

per-unit pro�t from placing an optimally priced limit order (abstracting away from

conditioning on x) is

L(vi) ≡ Pb(p
∗(vi))

(
vi − p∗(vi)

)
+
(
1− Pb(p

∗(vi))
)
rCb(vi). (7)

The buyer choosing the market order implies that her vi satis�es M(vi, ℓ) ≥ L(vi).

The next proposition states that the buyer's preference between M(vi, ℓ) and L(vi)

follows a threshold strategy such that buyers with values lower than a threshold

denoted ṽ(ℓ) would prefer the limit order and buyers with values higher than the

threshold would prefer the market order.

Proposition 1. Among v > ℓ, there is at most one value such that L(v) = M(v, ℓ),

i.e., such that a buyer with this value is indi�erent between an optimally priced limit

order and a market order of price ℓ. Denoting that value as ṽ(ℓ), the buyer would

prefer the limit order if vi < ṽ(ℓ) and prefer the market order if vi ≥ ṽ(ℓ).

Meanwhile, data suggest that some traders arriving in the market might default to

placing a limit order, rather than placing a limit order only if it is more pro�table
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than a market order. I allow for this default behavior in buyers and sellers with

probability αb and αs, respectively. With the remaining probability, traders act in

accordance with Proposition 1.

3.4 The seller

Now consider the seller. Conditional on order volume mi, seller i's opportunity cost

of relinquishing the water is ci per unit, distributed according to Fs(·|xi). The seller's

problem is largely a mirror image of the buyer's. The seller analogs of Assumptions

1-3 are named Assumptions 1S-3S and stated in the Appendix. This section concisely

summarizes seller analogs of the results we discussed in previous sections for buyers.

Note that unlike buy limit orders, sell limit orders with a higher price are less likely

to be executed because the counterparties�buyers�prefer to pay lower prices.

Choosing a limit-order price with no revision in the future

Consider a seller's choice of limit order price when she believes there will be no revision

in the future. Given her opportunity cost cr,i and probability of order execution

Ps(pr|xr), her maximization problem is maxpr Ps(pr|xr,i)(pr−cr,i). Di�erentiating this

objective function with respect to pr, the �rst-order condition gives

pr +
Ps(pr|xr,i)

P ′
s(pr|xr,i)

= cr,i. (8)

Thus, rather than submitting a price equal to her cost, she will choose a higher price

pr > cr,i, since P ′
s(pr|xr,i) < 0. Let p∗r(cr|xr) denote the seller's optimal price that

satis�es equation (8). By Assumption 1S, the left-hand side of equation (8) is strictly

increasing in pr. It follows that p
∗
r(cr|xr) is strictly increasing in cr.

Choosing a limit-order price accounting for revision in the future

Now consider the possibility that the seller will revise her limit order after placing

it. Her per-unit opportunity cost of relinquishing water at the time of revision is

denoted cr,i. Let Cs(ci|xi) denote the expected pro�t from revising a limit order in

the future, as perceived by the seller at the time she submits the initial limit order:

Cs(ci|xi) ≡ Etr,i,xr,i,cr,i [Ps(p
∗
r(cr,i|xr,i)|xr,i)(p

∗
r(cr,i|xr,i)− cr,i) |ci, xi ]. When choosing a

price p for such a limit order, her maximization problem is maxp Ps(p|xi)(p − ci) +

(1− Ps(p|xi))rCs(ci|xi). Di�erentiating this objective function with respect to p, the
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�rst-order condition gives

p+
Ps(p|xi)

P ′
s(p|xi)

= ci + rCs(ci|xi). (9)

Corrollaries 1S and 2S are seller analogs of Corrollaries 1 and 2.

Corrollary 1S. ∂Cs(c|x)/∂c ≤ 0.

Corrollary 2S. The sellers' best-response price function p∗(c|x) for a limit order is

strictly increasing in c.

Choosing between a market order and a limit order

Suppose a seller chooses a market order with price h and volume m. Conditional

on m, let seller i's opportunity cost of relinquishing the water be ci per unit. Then

the seller's per-unit pro�t from this market order is M(ci, h) ≡ h− ci. For the seller

to have placed this market order, it must be that M(ci, h) exceeds the expected

pro�t from placing a limit order for m. The seller's expected per-unit pro�t from

placing an optimally priced limit order (abstracting away from conditioning on x) is

L(ci) ≡ Ps(p
∗(ci))(p

∗(ci)− ci) + (1− Ps(p
∗(ci)))rCs(ci).

Proposition 1S. Among c < h, there is at most one value of c such that L(c) =

M(c, h), i.e., such that a seller with this cost is indi�erent between an optimally priced

limit order and a market order of price h. Denoting that value as c̃(h), the seller would

prefer the limit order if ci > c̃(h) and prefer the market order if ci ≤ c̃(h).

3.5 Identi�cation

The broad intuition for identi�cation of buyers' values and sellers' costs conditional on

order volume is provided by the �rst-order conditions for limit order pricing derived

above. However, there are additional complexities to address because i) traders may

choose to place market orders rather than limit orders, and ii) traders may revise

their limit order in the future.

I assume the following are observed for each limit order: the price p and covariates

x; indicators for whether it is buy/sell, an initial order/revision, executed/not; and

the associated revision order, if any. The following are observed for each market

order: the trade price p, covariates x, and whether it is buy/sell. For the purpose
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of assessing counterfactual exchange design, the necessary model objects to identify

are Fb, F
r
b and Fs, F

r
s . These are the distribution of buyer values, the conditional

distribution of buyers' revision values, and the analogs for sellers. While I use this

distributional notation in keeping with convention and for the sake of expositional

brevity, identi�cation is in fact obtained at a more granular level: order-level values

and costs are identi�ed for all limit orders, both initial orders and revisions. As an

intermediate step, I also identify the execution probabilities, Pb(·|x) and Ps(·|x), and
the probabilities of defaulting to limit orders, αb and αs. For the remainder of this

section, I abstract away from conditioning on x and xr.

Identification of Pb(·),Ps(·) and F̃ r
b (·|·),F̃ r

s (·|·)
The probability of limit order execution Pb(p) and Ps(p) for the buyer and seller,

respectively, are identi�ed as E[1executed|p], where 1executed = 1 if a limit order is

executed and 0 otherwise. Next, consider identi�cation of the buyer's value vr or

seller's cost cr associated with each observation of a revised limit order with price

pr. Having identi�ed Pb(·) and Ps(·), equations (2) and (8) identify the type as

vr = pr +
Pb(pr)
P ′
b(pr)

and cr = pr +
Ps(pr)
P ′
s(pr)

for buyers and sellers, respectively.

By Corrollaries 2 and 2S, the limit order price function p∗(·) of a trader is mono-

tonic in the trader's value or cost. To reduce clutter in notation, I use p∗(·) to denote
both the buyers' and sellers' price functions though they are di�erent functions for

the two sides. Using the monotonicity of p∗(·), I de�ne new notation F̃ r
b (·|·) and

F̃ r
s (·|·) such that F̃ r

b (vr|p∗(v)) = F r
b (vr|v) and F̃ r

s (cr|p∗(c)) = F r
s (cr|c).26 As the type

underlying each revised limit order is identi�ed, and the price of the initial order

associated with each revised order is observed, the distribution F̃ r
b (·|p) conditional on

any p is identi�ed as the empirical distribution of vr conditional on that initial order

price p. Analogous logic applies to identi�cation of the seller's F̃ r
s (·|p).

Identification of the v or c associated with each limit order

Using the monotonicity in Corrollaries 2 and 2S, I de�ne new notation C̃(·) for the
expected pro�t of revising a limit order such that C̃b(p

∗(v)) = Cb(v) for a buyer

and C̃s(p
∗(c)) = Cs(c) for a seller. Speci�cally, this involves replacing F r

b (vr|v)
with F̃ r

b (vr|p∗(v)) inside the de�nition of Cb(·). For a buyer, this gives C̃b(p) ≡∫
vr
Pb(p

∗
r(vr))(vr − p∗r(vr))dF̃

r
b (vr|p). As Pb(·), F̃ r

b (vr|p), and the value vr associated

26In an analysis of sequential auctions, Kong (2021) uses the monotonicity of �rst-auction bids to
similarly de�ne the distribution of second-auction values conditional on observed �rst-auction bids
and establishes identi�cation of that conditional distribution.
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with each observed revision price p∗r(vr) are identi�ed as explained above, C̃b(p) is

identi�ed. Analogous logic applies to identi�cation of the seller's C̃s(p).

Having identi�ed C̃b(·) and C̃s(·), the buyer's v or seller's c associated with an

initial limit order is identi�ed by �rst-order conditions (5) and (9) as

v = p+
Pb(p)

P ′
b(p)

+ rC̃b(p), (10)

c = p+
Ps(p)

P ′
s(p)

− rC̃s(p). (11)

Knowledge of the v or c associated with any order price p implies identi�cation

of the inverse limit-order price function, p∗−1(·). Having identi�ed F̃ r(·|·) above,

knowledge of p∗−1(·) allows identi�cation of F r(·|·) using F r
b (·|p∗−1(p)) = F̃ r

b (·|p) and
F r
s (·|p∗−1(p)) = F̃ r

s (·|p).

Identification of αb and αs

Per Proposition 1, a rational buyer i prefers a market order of price ℓi over a limit order

if vi ≥ ṽ(ℓi), where the threshold ṽ(ℓi) is known as the solution to the indi�erence

condition L(ṽ(ℓi)) = M(ṽ(ℓi), ℓi). The probability αb that buyers default to placing

a limit order is then identi�ed as the probability that they place a limit order despite

vi ≥ ṽ(ℓi):

αb =
#{limit orders|vi ≥ ṽ(ℓi)}

#{market orders}+#{limit orders|vi ≥ ṽ(ℓi)}
. (12)

Similarly, by Proposition 1S, the probability αs that sellers default to placing a limit

order is identi�ed as the probability that they place a limit order despite ci ≤ c̃(hi):
27

27In equations (12) and (13), we need the ℓi or hi relevant to each observed limit order to identify
αb and αs. To be clear, the researcher does not need to know ℓi or hi�the best available market
order price�when it comes to identifying the values and costs underlying each limit order, per
equations (10) and (11). But ℓi or hi is needed to de�ne whether an observed limit order constitutes
irrational behavior. When available market order opportunities have heterogeneous volumes, what
constitutes this best available market order price is less obvious because it is not clear which sell
listings were relevant for a buyer who ultimately ordered volume mi in the data.
At a minimum, the set of market order opportunities relevant to this buyer i includes all live sell

listings o�ering at least volume mi, because the buyer could buy and leave unused any excess over
mi. To compare with i's observed limit order, de�ne ℓi as the lowest of (total price)/mi among
this set. (Note ℓi is then likely to come from a listing with a volume relatively close to mi, because
larger volumes are less likely to have the lowest total price.) A rational buyer choosing to place the
observed limit order despite the availability of this ℓi implies that her value cannot exceed ṽ(ℓi).
Therefore, if her limit order actually has vi ≥ ṽ(ℓi), it is classi�ed as �default� behavior.
Imposing arbitrary assumptions that enlarge the set of sell listings relevant to buyer i can only
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αs =
#{limit orders|ci ≤ c̃(hi)}

#{market orders}+#{limit orders|ci ≤ c̃(hi)}
. (13)

Identification of Fb(·),Fs(·)
While the buyer's v associated with each initial limit order is point identi�ed as

explained above, all we can know about the v associated with each observed market

order of price ℓi is that vi ≥ ṽ(ℓi). Thus, for a �xed ℓ, we would not be able to identify

Fb(·) above ṽ(ℓ) if αb = 0; we would only be able to identify the shape of Fb(·) for
values up to ṽ(ℓ) and identify the total mass but not the shape of values above ṽ(ℓ).

On the other hand, if αb > 0, we would also see limit orders associated with values

above ṽ(ℓ). Since we can identify the vi associated with each limit order, this allows

for the nonparametric identi�cation of Fb(·) on its entire support. Analogously, if

αs > 0, Fs(·) is nonparametrically identi�ed on its entire support. The proof of

Proposition 2 provides the details of this step.

Proposition 2. Under Assumptions 1�3 and 1S�3S, the buyer value v or seller cost c

associated with each limit order is identi�ed in addition to the conditional distributions

of revision values and costs, F r
b (·|·) and F r

s (·|·), and the probabilities of defaulting to

limit orders, αb and αs. If αb, αs > 0, the value and cost distributions Fb(·) and Fs(·)
are also identi�ed nonparametrically.

Discussion

This section established identi�cation of buyers' values and sellers' costs conditional

on the volumes they ordered in the data. To the extent that bilateral frictions on

the exchange distort a trader's observed order volume away from their ideal, it is

not possible to identify from my data what volume the trader would have ordered

in the absence of said frictions. Stated in broader terms, the value-volume function

(i.e., demand or supply curve) of individual trader i cannot be identi�ed from their

scalar order price and volume. There is also no clear relationship between order

volumes and prices in the aggregate (see Section 5.1, Table 2). In light of the non-

identi�cation of latent target volumes, the counterfactual simulations of Section 6 will

have traders retain the same order volumes as seen in the data. This conservative

lower ℓi. Lower ℓi implies lower ṽ(ℓi), leading to a higher probability that an observed limit order
constitutes default behavior. I use the de�nition above which minimizes the implied rate of default-
ing. For a seller i who placed a sell limit order of volume mi in the data, the analogous de�nition of
hi is the highest of (total price)/mi among all live buy listings that seek up to volume mi.
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approach understates the e�ciency gains of the counterfactual mechanisms I study,

which eliminate bilateral frictions. If traders were to order di�erent, undistorted

volumes in response to mechanisms that eliminate volume frictions, the full e�ciency

gains would be greater than the ones I present in Section 6.

4 Extensions and estimation

4.1 Extensions

Risk aversion The main participants in Australian water markets are irrigators

(farmers). In light of evidence from the literature, e.g., Bajari and Hortaçsu (2005),

that real behavior is often better represented by risk-averse models than risk-neutral

ones, I allow for the possibility that traders are risk averse. A risk-averse buyer

with no future revision chooses a limit order price to maximize Pb(pr)U((vr − pr)m),

where U(·) is the utility function. Under the constant relative risk aversion (CRRA)

speci�cation of U(·) = (·)1−η

1−η
, the �rst-order condition for this maximization problem

gives
Pb(pr)

P ′
b(pr)

=
U(vr − pr)

U ′(vr − pr)
=

vr − pr
1− η

. (14)

A CRRA parameter of η = 0 represents risk neutrality while η > 0 represents risk

aversion. For η ∈ [0, 1) the right-hand side of (14) is increasing in η. Given Assump-

tion 1, a more risk-averse buyer will thus choose a higher limit order price to satisfy

(14); i.e., she will shade her price less. The intuition is that a risk-averse trader is

less tolerant of the risk of not trading and is therefore willing to accept lower pro�t

to reduce this risk. For any given η, the vr associated with an observed limit order

price pr is identi�ed by rearranging equation (14) to obtain

vr = pr + (1− η)
Pb(pr)

P ′
b(pr)

. (15)

Meanwhile, when a buyer anticipates she will have an opportunity to revise the

limit order with probability r and the expected utility of revision is Cb(v), her optimal

limit order price p satis�es

Pb(p)

P ′
b(p)

=
U(v − p)− rCb(v)

U ′(v − p)
=

v − p

1− η
− rCb(v)(v − p)η. (16)
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As explained in Section 3.5, we can replace Cb(v) with C̃b(p) in equation (16) if

p = p∗(v). This yields Pb(p)
P ′
b(p)

= U(v−p)−rC̃b(p)
U ′(v−p)

. Given that U ′(·) > 0 and U ′′(·) ≤ 0,

the right-hand side of this equation is increasing in v. Thus, for any given η, the

v associated with any observed p is identi�ed as the unique value that satis�es this

equation.

It remains to identify η. The empirical literature shows that risk aversion can

be identi�ed, for example, through various exclusion restrictions.28 Here, I will take

a more �exible approach: rather than pinning down a single value of η through an

exclusion restriction, the empirical analysis will be conducted over a range of η values

that can rationalize the observed data under Assumption 4 below, a natural assump-

tion regarding the value and cost distributions. Per equation (15), an important role

of η is to a�ect the amount of price shading, or the di�erence between the trader's

chosen limit order price and her underlying value. Conducting the analysis and com-

paring empirical �ndings across a range of risk aversion levels will yield additional

insights about the impact of price shading and conclusions that are robust to varying

levels of price shading.

Assumption 4. The distributions of buyer values Fb, F
r
b and of seller costs Fs, F

r
s

each have non-negative support.

Some values of η may not be able to rationalize the observed data while satisfying

Assumption 4. For example, consider the seller's analog of equation (15), cr = pr +

(1− η)Ps(pr)
P ′
s(pr)

. Because P ′
s(pr) < 0 for the seller, the right-hand side may be negative

at some values of η, which violates Assumption 4.

Taxes and fees In the empirical application, income taxes and exchange fees are

levied on the seller as a fraction τ of sales revenue if a trade occurs. Then a seller with

CRRA utility and no future revision would choose a limit order price to maximize

Ps(pr)U([(1− τ)pr − cr]m). The �rst-order condition for this maximization problem

gives

pr + (1− η)
Ps(pr)

P ′
s(pr)

=
cr

1− τ
.

28Example exclusion restrictions used in the auction literature include conditional independence
of value distributions and the number of bidders (Guerre, Perrigne, and Vuong (2009)) or auction
formats (Lu and Perrigne (2008), Kong (2020)). Perrigne and Vuong (2021) and Vasserman and
Watt (2021) survey additional strategies for identifying risk aversion.
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When a seller anticipates she will have an opportunity to revise the limit order with

probability r and the expected utility of revision is Cs(c), her optimal limit order

price p satis�es

p+ (1− η)
Ps(p)

P ′
s(p)

=
c+ rCs(c)(1− η)[(1− τ)p− c]η

(1− τ)
. (17)

Meanwhile, if a trade occurs, buyers pay a �at trade approval fee of 47.50 AUD

per trade to the state water authority during the sample period. Denoting this �at

fee as f , the buyers' �rst order conditions for limit order pricing follow (14) and (16)

with v − f/m (unit value net of fees) replacing v in those equations.

4.2 Estimation

While the estimation procedure closely aligns with the identi�cation argument, a key

task of estimation is to condition estimated functions on the vector of covariates x

in the context of a limited sample. Therefore, some functions will be estimated with

parametric speci�cations though they are identi�ed nonparametrically. To allow a

range of di�erent risk aversion levels, I conduct the estimation procedure once for

each value of the CRRA parameter η over a grid in [0,1) at intervals of 0.01.

Estimation of Pb(p|x) I specify the execution probability function Pb(p|x) with a

probit model of the form Pb(p|x) = Φ(f(p; βp)+xβx), where Φ(·) is the standard nor-

mal CDF, f(p; βp) is a fourth order polynomial of p to allow �exible shapes in p, and

βp and βx are probit coe�cient vectors to be estimated. To satisfy the monotonicity

property P ′
b(p|x) > 0, the probit coe�cients are estimated via maximum likelihood

subject to the constraint that f ′(p; βp) > 0 for buyers.

Estimation of C̃b(p|x) Having estimated P̂b(p|x), the buyer's value vr associated

with each revision order price pr is estimated in accordance with �rst-order condition

(15) as

v̂r − f/m = pr + (1− η)
P̂b(pr|xr)

P̂ ′
b(pr|xr)

.

The buyer's expected utility from such a revision order is P̂b(pr|xr)([v̂r − pr]m −
f)1−η/(1 − η) ≡ m1−ηπ̂r. Then, as de�ned in Section 3.5, the expected utility of

revision C̃b(p|x) is the expectation of π̂r given p and x of the initial limit order. I
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estimate ˆ̃Cb(p|x) via random forest regression of each revision order's π̂r on the p and

x of the associated initial order.

Estimation of the v̂ associated with each limit order Having estimated
ˆ̃Cb(p|x), the buyer's value v associated with each initial limit order price p is es-

timated by solving for the v̂ that satis�es �rst-order condition (16), of which the

empirical analog is

P̂b(p|x)
P̂ ′
b(p|x)

=
v̂ − f/m− p

1− η
− r ˆ̃Cb(p|x)(v̂ − f/m− p)η.

Estimation of αb Having estimated the v̂ of each limit order, the probability αb

that buyers default to placing a limit order is estimated using the empirical analog of

equation (12), namely

α̂b =
#{limit orders|v̂i ≥ ˆ̃v(ℓi)}

#{market orders}+#{limit orders|v̂i ≥ ˆ̃v(ℓi)}
.

The market/limit threshold ˆ̃v(ℓi) applicable to each limit order i is found by solving

the indi�erence condition that a buyer with value ˆ̃v(ℓi) is indi�erent between a limit

order and a market order, given the risk aversion level η.

Estimation of Fb(v|x) Note that v̂i is not available for the observed market orders,

about which we know only that vi ≥ ˆ̃v(ℓi). Therefore, even though we have order-level

v̂i for all limit orders, we will also want to estimate the value distribution Fb(v|x) to
enable simulations in the post-estimation analysis. I specify a lognormal distribution

for Fb(v|x) because the empirical distribution of v̂ resembles a lognormal distribution.

Speci�cally, I let v be distributed according to Lognormal(xθµ, exp(xθσ)), where xθµ

and exp(xθσ) are the mean and standard deviation of ln(v), respectively. The pa-

rameter vectors θµ and θσ are estimated by maximizing the likelihood of observed

limit and market orders. The likelihood of a market order is (1−Fb(ˆ̃v(ℓi)|xi))(1−αb)

because a market order implies vi ≥ ˆ̃v(ℓi) and that the buyer did not default to a

limit order. Letting fb(v|x) denote the pdf of Fb(v|x), the likelihood of a limit order

with v̂i ≥ ˆ̃v(ℓi) is fb(v̂i|xi)αb, and the likelihood of a limit order with v̂i < ˆ̃v(ℓi) is

fb(v̂i|xi).
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The seller analogs of each of the objects above are estimated in the same manner

using the seller's version of the model equations and de�nitions.

5 Estimation results

5.1 Covariates

Elements of the vector of covariates x broadly fall into two categories. The �rst cate-

gory, which I collect in the vector xw, concerns the fundamentals of water. I account

for water availability using the daily total amount of water in the major storages

of the Victorian Murray River, as provided by the Australia Bureau of Meteorol-

ogy.29 To capture true deviations of storage levels from long-term norms as opposed

to expected seasonal �uctuations, I regress the log of the daily total storage amounts

during February 2012 to February 2022 on month-day �xed e�ects and refer to the

regression residuals as �seasonally adjusted� log storage. Seasonality is accounted for

separately by waterday, which is a day number: the �rst day of the water year, July

1st, is day 1, and the last day of the water year, June 30th, is day 365 or 366 depend-

ing on the year. To be clear, waterday enters linearly (for ease of interpretation in

Tables 2 and 3) or in a polynomial (in the structural estimation) and contains only

month-day (seasonal) information; it is not a year-month-day �xed e�ect. The order

volume is also included in xw.

The second category of covariates, which I collect in the vector xe, concerns con-

ditions of the exchange at the time the trader's action being analyzed took place.

While the exchange is a high dimensional object, I include a feasibly limited set of

variables: the total volume in megaliters of live sell limit orders (ask depth) and buy

limit orders (bid depth); the lowest available per-unit sell limit order price (low ask)

or the highest available per-unit buy limit order price (high bid) and their di�erence

(bid-ask spread); total trade volume and the mean and standard deviation of trade

prices during the preceding week. If there were no trades during the preceding week,

I substitute with the mean and standard deviation of trade prices from the closest

preceding week in which trades occurred. If the ask (bid) depth is zero, I use the

most recent non-empty low ask (high bid) as a substitute for the low ask (high bid).

Table 2 shows that these covariates are able to explain a large fraction of the

29These storages are Lake Dartmouth, Lake Hume, the Menindee Lakes, and Lake Victoria.
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sample variance of limit order prices. The regressions in columns (1) and (2) pool

buy and sell limit orders, while columns (3) and (4) use only sell limit orders and

buy limit orders, respectively. The R2 = 0.78 of column (1) shows that elements

of xw, namely the amount of water storage and seasonality, have high explanatory

power when it comes to limit order prices. In particular, limit order prices decrease

in the amount of water stored. Column (2) shows that limit order prices are highly

correlated with the mean trade price of the preceding week, the inclusion of which

increases the R2 from 0.78 to 0.88. Columns (3) and (4) include the remaining xe

elements as regressors. In general, these regression coe�cients need not have causal

interpretations. Appendix Table A1 explores the explanatory power of additional

candidates including rainfall, evapotranspiration, and announcements of additional

water being allocated. In light of coe�cient signs on these variables that go against

economic logic and in the absence of improvement in the R2, I opt for the set in Table

2 to avoid increasing the number of parameters to estimate in the structural model.

Table 3 investigates the relationship between a trader's choice of limit order price

and probability of order execution, controlling for the covariates in x. To capture,

in a manner that is interpretable across periods of heterogeneous price distributions,

how competitive the chosen price is relative to the best per-unit price available on

the exchange, I normalize the limit order price as (price − best available price at

time of order placement)/(standard deviation of traded prices during the preceding

week) and use this normalized price in the probit regression. In line with economic

intuition, column (1) shows that execution probability is decreasing in order price

for sell orders. Meanwhile, consistent with the raw patterns seen in Section 2.3, the

response of the predicted execution probability to the order price is not very steep.

To elaborate, the standard deviation of traded prices is on average about 7% of the

low ask, though this varies across time. Interpreting Table 3, column (1) at sample

mean values of x, a sell limit order with a 7% higher per-unit price than the low ask

would have an approximately 3.2% lower execution probability than an order placed

at the low ask, ceteris paribus.

Over 95% of realized trades in the sample come from execution of sell limit orders

as opposed to buy limit orders, so the slope of buyers' execution probability is more

di�cult to estimate. To exploit a larger number of �ones� in estimating this slope,

I �rst de�ne P̃b(p|x) as the probability that either a buy limit order executes or a

trade of very similar price and volume occurs within its duration; very similar price
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Table 2: Regression of log limit order price on covariates

(1) (2) (3) (4)
daily storage (log), seasonally adjusted -2.461 -0.472 -0.551 -0.089

(0.027) (0.048) (0.061) (0.071)

waterday/366 -0.824 -0.204 -0.141 -0.061
(0.017) (0.019) (0.022) (0.027)

volume (log) -0.004 0.003 0.003 0.004
(0.004) (0.003) (0.003) (0.005)

mean trade price, prev week (log) 0.800 0.580 0.331
(0.017) (0.029) (0.047)

st dev of trade price, prev week 0.004 0.001
(0.001) (0.001)

total trade volume, prev week (1000 ML) -0.009 0.001
(0.002) (0.002)

ask depth (1000 ML) -0.008 0.011
(0.005) (0.008)

bid depth (1000 ML) 0.049 0.008
(0.008) (0.009)

bid-ask spread (100 AUD) 0.011 0.004
(0.003) (0.004)

low ask (log) 0.268
(0.024)

high bid (log) 0.528
(0.045)

sell dummy 0.130 0.130
(0.013) (0.010)

constant 5.299 0.986 0.825 0.608
(0.023) (0.095) (0.114) (0.155)

Data sample: sell or buy limit orders both both sell buy
Observations 2813 2813 2182 631
R2 0.782 0.876 0.891 0.879
Adjusted R2 0.782 0.876 0.890 0.877
Standard errors in parentheses

30



Table 3: Probit regression of whether a limit order executes

(1) (2)
sell buy*

limit order price, normalized -0.086 0.106
(0.008) (0.034)

daily storage (log), seasonally adjusted -2.221 -3.221
(0.462) (0.890)

waterday/366 -0.631 -0.683
(0.156) (0.293)

volume (log) -0.140 0.035
(0.025) (0.058)

mean trade price, prev week -0.005 -0.006
(0.001) (0.003)

st dev of trade price, prev week -0.005 -0.020
(0.004) (0.013)

total trade volume, prev week (1000 ML) -0.068 0.079
(0.018) (0.025)

ask depth (1000 ML) 0.107 0.136
(0.032) (0.089)

bid depth (1000 ML) 0.163 0.089
(0.055) (0.097)

bid-ask spread (100 AUD) -0.050 -0.016
(0.021) (0.046)

low ask 0.001
(0.001)

high bid 0.002
(0.003)

constant 1.441 -0.613
(0.230) (0.493)

Observations 2182 631
Pseudo R2 0.106 0.089
Notes: *The probit regression in (2) estimates the probability that
either a buy limit order executes or a trade of very similar price and
volume occurs within its duration; very similar price and volume is
de�ned as (p′ − p)2 + (m′ − m)2 ≤ 1. See the end of Section 5.1 for
details. Standard errors in parentheses.
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and volume is de�ned as (p′ − p)2 + (m′ − m)2 ≤ 1. I then use an approximation

that Pb(p|x) = ωP̃b(p|x), where ω ≡
∫ ∫

Pb(p|x)dpdx∫ ∫
P̃b(p|x)dpdx

. Table 3, column (2) reports the

relationship between P̃b(p|x) and its arguments via a probit regression. This P̃b(p|x)
is increasing in order price for buy orders.

5.2 Estimation results

This section discusses the results of the estimation procedure detailed in Section 4.2.

As described there, the execution probabilities Pb(p|x) and Ps(p|x) are estimated as

an intermediate step. The results of this estimation are similar to that shown in Table

3, with polynomials of limit order price and day number added for more �exibility.

The polynomial of price is constrained to be monotonic. The appendix reports the

estimated coe�cients in Table A2.

Recall that I conduct the estimation procedure once for each value of the CRRA

parameter η over a grid in [0,1) at intervals of 0.01. To respect Assumption 4 while

allowing for econometric error, the post-estimation analysis of Section 6 focuses on

the range of η values given which at most 1% of all sell limit orders have ĉ < 0.

This narrows η to [0.61, 1). The remainder of the paper will report results at the two

extremes of this range, η = 0.61 and η = 0.99.

The exposition, for the sake of brevity, often refers to value or cost distributions

such as Fs(·) and Fb(·). Estimates are in fact obtained at a much more granular

level: order-level v̂ or ĉ are estimated for all limit orders. To describe these order-

level value estimates, it is helpful to relate them to the respective observed order

prices. As discussed previously, di�erent values of η lead to di�erent amounts of price

shading. Given η = 0.99, the median amount of price shading |[pi−(v̂i−f/mi)]/(v̂i−
f/mi)| among all buy limit orders is 0.4%, and the median amount of price shading

((1 − τ)pi − ĉi)/ĉi among all sell limit orders is 0.7%. In other words, there is very

little price shading when traders are this risk averse, resulting in p ≈ v. Meanwhile,

given lower risk aversion at the level of η = 0.61, the analogous medians are 13%

for buy limit orders and 36% for sell limit orders. When it comes to the lognormal

speci�cations of Fs(·|xw) and Fb(·|xw)�the end of Section 4.2 explains why these

are estimated�the appendix reports the estimated parameters in Table A3. Unlike

the probability of limit order execution, the distribution of latent values (or costs) is

speci�ed as a policy-invariant primitive that depends only on water fundamentals xw
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and not on exchange conditions xe. Similarly to what we saw in Table 2, values for

water are decreasing in the amount of water available in the major storages of the

Victorian Murray River. The appendix also provides an illustration of how well the

shape of the lognormal distribution approximates that of the estimated order-level

valuations (Figure A1).

Finally, the estimated probability α of placing a limit order by default varies widely

with η. This is because buyers' v̂ and sellers' ĉ also vary with η, and α is estimated

by assessing the rationality of choosing a limit order versus a market order in light of

these v̂ or ĉ. Nonetheless, estimates given both high and low η indicate that sellers

are much more likely to default to limit orders than are buyers, in harmony with

the empirical observation that 78% of limit orders on the exchange are sell orders.

Speci�cally, α̂s = 0.93 and α̂b = 0.18 given η = 0.61, while α̂s = 0.62 and α̂b = 0.04

given η = 0.99.

6 Counterfactual analysis

6.1 Benchmark: batch uniform-price market clearing

Consider the benchmark of periodically crossing latent supply and demand, as illus-

trated in Figure 3. A market clearing price and quantity are determined by where

the period's aggregate supply and aggregage demand curves cross. Within each pe-

riod, this would give the e�cient allocation. In particular, I will consider market

clearing on a weekly basis for comparability with the observed exchange, where the

mean duration of a limit order is about 8 days. In �nance, call or batch auctions at

discrete times have long been considered an alternative to continuous trading; Econo-

mides and Schwartz (1995), Handa and Schwartz (1996), and others have argued the

merits of concentrating orders in a call auction. Also, Rustichini, Satterthwaite, and

Williams (1994) and Satterthwaite and Williams (2002) show that trade at a sin-

gle market-clearing price through a double auction makes the worst-case ine�ciency

converge to zero at the fastest possible rate as the number of traders increases.

My benchmark di�ers in important ways from the continuous, bilateral exchange

observed in the data. The benchmark has temporal aggregation of traders as the mar-

ket is cleared at discrete time intervals. Trade is multilateral rather than bilateral

as the volumes are pooled; i.e., the volume that the benchmark allocates to a given
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Figure 3: Illustration of uniform-price market clearing
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trader may come from/go to multiple counterparties. This avoids bilateral frictions.

Unlike the observed exchange where multiple trade prices occur even at a given mo-

ment, the benchmark generates a single market-clearing price that sorts which buyers

and sellers get to trade and which do not. Finally, the benchmark crosses latent

supply and demand, so there is no price shading by construction. To supplement

the benchmark, which quanti�es an ideal, I also consider a closely related incentive

compatible mechanism adapting McAfee (1992) in Section 6.2.

I use the model primitives estimated per Sections 4 and 5 to counterfactually

simulate the market-clearing benchmark discussed above. Aside from the change

from limit order market to batch market clearing, I endeavor to keep all else the

same as on the observed exchange. First, traders arrive at the same times, with the

same volumes, and with the same values v̂ or costs ĉ as on the observed exchange.

There are two exceptions that arise from tracking revisions. One exception occurs

if an order is not executed in the data but the corresponding order does become a

trade in the counterfactual world: then any revisions of such orders are deleted in

the counterfactual world because it would be double counting to resubmit a volume

that has already traded. The other exception occurs if an initial order and associated

revision order happen in the same week in the data: then the revision order is deleted

from the counterfactual to avoid double counting that volume in a single week. By

reducing volume in the counterfactual benchmark, these exceptions work against the

benchmark in a comparison versus the observed exchange. Second, each trader still

submits a single price for their order. Third, traders still account for dynamics,
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meaning there is a non-zero continuation value of failing to trade. Since continuation

values depend on exchange design, the continuation values traders account for in the

counterfactual are recomputed by simulation per the details below. Finally, sellers

still pay the same rate of taxes and fees. Buyers still pay the same �at fee per trade,

but now a purchase resulting from a single buy order counts as a single trade for

purposes of the fee, regardless of the number of sellers from which that purchase

is sourced. If the market clearing counterfactual leads to only part of their order

executing, I have each buyer pay 47.50 AUD × executed volume

order volume
to preserve the same fee

per traded unit they would have paid on the observed exchange. Implementation

details follow; readers who wish to skip the technical details may proceed to the

counterfactual simulation results.

Implementation details

In any given week, I observe buyers and sellers arrive and make a limit or market

order on the observed exchange. For each observed limit order, I have an estimated

v̂i or ĉi to use in simulating the counterfactual. For each observed market order,

I know only that vi ≥ ˆ̃vi for buy orders and ci ≤ ˆ̃ci for sell orders, where ˆ̃vi and

ˆ̃ci are the relevant thresholds for choosing a market order. Therefore, for each buy

market order I randomly draw a vi from the left-truncated lognormal distribution

[F̂b(·|xw,i) − F̂b(ˆ̃vi|xw,i)]/[1 − F̂b(ˆ̃vi|xw,i)], and for each sell market order I randomly

draw a ci from the right-truncated lognormal distribution F̂s(·|xw,i)/F̂s(ˆ̃ci|xw,i). I

now have a value or cost associated with every trader arrival. For ease of notation,

I will refer to both estimated and simulated valuations collectively using the hat

notation as v̂i and ĉi. Given no future revision, a buyer's market-facing value equals

her v̂i − f/mi with �at fee f , while a seller's market-facing cost is ĉi/(1 − τ) due to

taxes and fees of rate τ . With the possibility of future revision, a buyer's market-

facing value is v̂i−f/mi−U−1(rĈCF,b(v̂i|xi)), and a seller's market-facing cost is [ĉi+

U−1(rĈCF,s(ĉi|xi))]/(1− τ), where the CF subscripts in ĈCF,b(v̂i|xi) and ĈCF,s(ĉi|xi)

denote that they are continuation values in the counterfactual, as opposed to the

observed, design.

The counterfactual continuation values are simulated by iteration as follows. Us-

ing estimated continuation values Ĉb(v̂i|xi) and Ĉs(ĉi|xi) from the observed exchange

as initial guesses, I simulate the counterfactual benchmark week by week in calen-

dar sequence. This allows me to compute the realized utility π̂r of each revision in

the counterfactual. Next, I estimate the expected utility of revision given v̂i and xi
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of the initial order via random forest regression of π̂r on v̂i and xi. This estima-

tion gives updated counterfactual continuation values ĈCF,b(v̂i|xi) and ĈCF,s(ĉi|xi).

Then the counterfactual benchmark is re-simulated using the updated continuation

values, and this procedure is iterated until the di�erence in U−1(rĈCF,b(v̂i|xi)) and

U−1(rĈCF,s(ĉi|xi)) between iterations is less than 0.10 Australian dollars.

Armed with market-facing valuations for all trader arrivals, I construct the ag-

gregate supply and demand curves for each calendar week. As each trader submits a

single price for their volume, the aggregate supply and demand curves are not smooth

but involve steps. If the curves cross at a single point, the market-clearing price and

quantity are immediately determined by that point. It is also possible that the curves

cross along a vertical or horizontal line due to their steps. In this case, the market-

clearing quantity (or total trade volume) is de�ned such that every unit for which the

market-facing value of the buyer is greater than or equal to the market-facing cost of

the seller is traded. If the supply and demand curves meet along a vertical line or do

not cross at all, then the market-clearing price is de�ned to be the midpoint of the

buyer's and seller's market-facing valuations for the marginal traded unit. Finally,

I note that clearing the market in this way may result in partial execution of the

volume of one marginal trader.

Counterfactual simulation results

Before discussing counterfactual simulation outcomes in the aggregate, it is informa-

tive to examine the simulated benchmark at the trade level, comparing counterfactual

trades to observed trades. Figure 4 provides a visual comparison at the trade level.

The triangles mark trades in the observed limit order market while the circles mark

trades in the counterfactual uniform-price market clearing benchmark. The x-axis

represents the log di�erence between the seller's tax-adjusted cost ĉ/(1− τ) and the

price that would have cleared the market the week the trade occurred. The y-axis

represents the log di�erence between the buyer's value v̂ − f/m and the price that

would have cleared the market the week the trade occurred. The dotted line is a

45-degree line; all trades should lie above this line because trade is possible only if

v̂ − f/m ≥ ĉ/(1− τ).

In the counterfactual benchmark, there is a single market-clearing price p each

week, and only those buyers with v − f/m ≥ p and sellers with c/(1 − τ) ≤ p

can qualify for trade. Thus, all the circles in Figure 4 lie in the shaded upper-left

quadrant. Meanwhile, the triangles that fall outside the shaded quadrant illustrate
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Figure 4: Comparison of counterfactual versus observed trades, η = 0.61

that in the observed limit order market, relatively low-value buyers and high-cost

sellers are able to trade by exploiting the time and price dispersion available there.

These trades are still individually Pareto-improving, as they are above the 45-degree

line, but they may happen at the cost of more e�cient potential trades involving

higher-value buyers or lower-cost sellers. The �gure illustrates that the sorting of

which buyers and sellers get to trade is di�erent in the market-clearing benchmark

versus in the observed exchange.

Table 4 reports how aggregate outcomes of the counterfactual benchmark compare

to those of the observed limit order market. The table reports outcomes given two

di�erent risk aversion levels, η = 0.99 and η = 0.61. To compare counterfactual versus

observed outcomes during the same time period and under the same risk aversion

level, it displays each respective counterfactual outcome−observed outcome

observed outcome
×100%. The primary

outcome of interest is total trade surplus, de�ned as the sum of buyer's pro�t v̂ −
f/m− p and seller's pro�t (1− τ)p− ĉ for all traded units of water. In all reported

categories, trade surplus is higher in the market-clearing benchmark than in the

observed limit order market. How much higher it would be varies with the extent

of risk aversion and the time period. Consider �rst the outcomes given η = 0.99.

Recall that there would be very little price shading on the observed exchange given

this level of risk aversion, so price shading is e�ectively excluded as a possible source

of discrepancy with the benchmark. Setting aside price shading, Table 4 reports that
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Table 4: Percent change of counterfactual outcomes from observed exchange

storage residual total surplus per total trade
time period (ML, mean) surplus unit traded volume

benchmark
η = 0.99

full sample −591,242 +18% +13% +4%
Apr. 2020�Sep. 2020 −1,483,614 +26% +38% −9%
Oct. 2020�Mar. 2021 −799,056 +9% +8% +1%
Apr. 2021�Sep. 2021 507,807 +23% +1% +22%

η = 0.61

full sample −591,242 +58% −20% +97%
Apr. 2020�Sep. 2020 −1,483,614 +40% +9% +28%
Oct. 2020�Mar. 2021 −799,056 +45% −12% +65%
Apr. 2021�Sep. 2021 507,807 +140% −23% +212%

dominant strategy double auction
η = 0.61

full sample −591,242 +52% −16% +80%
Apr. 2020�Sep. 2020 −1,483,614 +37% +13% +21%
Oct. 2020�Mar. 2021 −799,056 +39% −9% +53%
Apr. 2021�Sep. 2021 507,807 +129% −18% +179%

Notes: Table reports the percent change in simulated counterfactual outcomes from correspond-
ing outcomes of the observed limit order market for the same time period and the same risk
aversion level.
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trade surplus would be 18% higher in the benchmark over the full sample period.

Meanwhile, if price shading does occur on the observed limit order market, there

would be additional e�ciency losses coming from that. Given the incentives for price

shading produced by the derivative of the execution probability with respect to price,

Section 5.2 suggests a considerable amount of price shading would take place at lower

risk aversion levels. Indeed, Table 4 reports that the surplus gains of the benchmark

would be much larger given η = 0.61, exceeding 50% over the full sample period.

6.2 A dominant strategy double auction

To supplement the benchmark, I also simulate a closely-related incentive compatible

mechanism by adapting the dominant strategy double auction proposed by McAfee

(1992). In this double auction, prices are determined by the bids of the buyer and

seller who marginally disqualify for trade. Thus, a trader's bid does not a�ect her

price conditional on trade but only a�ects whether she trades. By the usual Vickrey

argument (as applied in, e.g., a second-price auction), bidding one's true valuation

is a dominant strategy in this auction. However, relying on excluded bids to deter-

mine prices leads to, in some situations, marginal trades being dropped, so incentive

compatibility comes at the cost of a surplus loss relative to the benchmark. Also, the

mechanism sometimes needs to pay sellers a lower price than it collects from buyers

and makes money as a result.

The McAfee (1992) auction is for traders demanding or supplying one unit each.

In my multi-unit setting, there is an additional incentive to bid untruthfully arising

from the possibility of partial execution. If the market-clearing quantity results in

partial execution of the marginal qualifying bid, then there are potential gains to

be had from lying to move up in rank among trade-quali�ed bids. To restore in-

centive compatibility, I remove the link between bid rank and portion executed by

executing an equal fraction of all trade-qualifying bids on the same side of trade.

For interested readers, the next paragraph speci�es further details of the multi-unit

dominant strategy double auction that I implement. Aside from the mechanism, all

other implementation details remain the same as in Section 6.1.

In each calendar week, buyers report their per-unit value b, and sellers report their

per-unit cost s. The mechanism will charge buyers a price pb and pay sellers ps per

traded unit, to be determined below. Let demand units be ranked, highest per-unit
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value �rst, and let supply units also be ranked, lowest per-unit cost �rst. In auction

version (A), let buyer k be the worst-ranked buyer for whom all demanded units have

a value greater than or equal to the costs of correspondingly ranked supply units. Let

seller j(k) be the counterpart seller for k's last unit. If next-ranked buyer k + 1 and

seller j(k) + 1 exist, de�ne p0 =
1
2
(bk+1 + sj(k)+1). Then, if bk+1 ≤ sj(k)+1 and p0 ∈ [sj(k), bk],

otherwise, if bk+1 ≥ sj(k)+1,

pb = ps = p0;

pb = bk+1, ps = sj(k)+1.

In either of the above scenarios, buyers 1 through k will buy their demanded units in

full, and sellers 1 through j(k) will sell, with any partial execution applied as an equal

fraction across them. If neither of the above scenarios applies, I move up the ordered

buyer list in sequence until a buyer k − i is found such that bk−i+1 ≥ sj(k−i)+1. Then

pb = bk−i+1, ps = sj(k−i)+1, and buyers 1 through k− i will buy their demanded units

in full. If this condition is not met by any i, no trade occurs. In auction version (B), I

reverse the role of the buyer and seller above. Namely, let seller k be the worst-ranked

seller for whom all supplied units have a cost lower than or equal to the values of

correspondingly ranked demand units, let buyer j(k) be the counterpart buyer for k's

last unit, and implement rules analogous to those of auction version (A). For each

calendar week, I then adopt the version that yields higher trade volume.

The bottom of Table 4 displays the results for η = 0.61. For η = 0.99, traders

already choose p ≈ v due to their risk aversion; a dominant strategy auction is not

separately needed to induce truthtelling. Comparing with corresponding results from

the benchmark, we see that the percent changes of the dominant strategy auction

are of similar but reduced magnitude. For example, given η = 0.61, the total trade

surplus increase over the full sample period would be 58% in the benchmark versus

52% in the dominant strategy auction.

One caveat in interpreting these results is that this comparison of counterfactuals

versus the observed exchange holds trader entry constant at the observed level. If a

new mechanism increases trade surplus, it may in practice attract more participants,

increasing market thickness and generating even larger surplus gains. Here I provide

computations for a conservative baseline maintaining the observed level of market

thickness.
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6.3 Interaction with drought

Table 4 also divides the data sample into three six-month periods and reports period-

speci�c outcomes. As water availability steadily improved during my data sample,

this allows me to examine how exchange design might interact with drought levels.

As a measure of water availability, the table displays the mean of seasonally adjusted

water storage for each period, which is the residual or deviation of water stored in

the major storages of the Victorian Murray River from predicted levels given the day

of the year; see Section 5.1. A negative storage residual indicates there is less water

than the historical average; a positive storage residual indicates there is more.

How does exchange design interact with drought? Decomposing total surplus into

�surplus per united traded� and �total trade volume� helps us understand this better.

First, relative surplus per unit traded decreases with water availability at both risk

aversion levels reported in Table 4. In other words, periods of drought are when

the counterfactual design would be especially e�ective at increasing trade surplus per

unit. This is because value heterogeneity is especially high during droughts, so there

are higher per-unit gains to be had from sorting the highest value buyers and lowest

cost sellers into trade. To illustrate this point, Figure 5 visualizes the impact of

drought on value heterogeneity by plotting buyers' market-facing values and sellers'

market-facing costs at the order level given η = 0.99, including for orders that did

not execute, at two points in time. The �rst is April 2020, the month in my data

when water availability was lowest, and the second is one year later in April 2021,

when water was plentiful in comparison. Indeed, the support of traders' values is

much wider in April 2020. With these same traders in April 2020, the benchmark

would have arranged counterfactual trades with an average seller opportunity cost ĉ of

about 218 AUD/ML versus 291 AUD/ML for trades seen on the observed exchange,

substantially reducing the average opportunity cost of traded water during drought.

Meanwhile, per the �total trade volume� column in Table 4, the benchmark's

ability to expand trade volume increases with water availability; it seems that when

water is abundant, a more e�cient mechanism can expand trade volume proportion-

ally more than it can during drought. To summarize, Table 4 suggests that a more

e�cient trade mechanism would lead to better trades during droughts and more trades

during times of abundance.
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Figure 5: Value heterogeneity in drought versus in plenty, η = 0.99
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6.4 A decomposition

How much do bilateral frictions, price shading, and temporal dispersion each con-

tribute to the gap between the observed exchange and the counterfactual bench-

mark? I conduct two additional simulations to isolate the e�ect of each feature.

First, I simulate a counterfactual scenario that maintains the same limit order prices

(price shading) and continuous-time nature (temporal dispersion) as the observed ex-

change, but eliminates frictions arising from bilateral volume mismatch. Comparing

this new counterfactual to the observed exchange isolates the contribution of bilateral

frictions. The way I eliminate bilateral frictions is by implementing 1 ML unit splits

of the sellers' volume. This allows buyers to �ll their order volume with the cheapest

units available on the exchange, regardless of how many di�erent sellers these units

come from and without having to buy the entirety of any seller's volume. To respect

potential lumpiness in buyers' demand and to understate rather than overstate the

counterfactual gains, I let buyers buy only if they can �ll their entire order volume

with units that are cheaper than their value. If the supply of such units is less than a

buyer's order volume, she does not buy at all. Buyers pay a �at fee f per trade as in

the benchmark; a purchase resulting from a single buy order counts as a single trade

for purposes of the fee, regardless of the number of sellers from which the purchase is

sourced. Sellers pay taxes and fees of rate τ on sales revenue as before. Noting that

over 95% of observed trades are generated by buyers ful�lling seller limit orders, I

simplify the simulation by having sellers submit limit orders only and buyers submit
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Table 5: Percent change of counterfactual total surplus from observed exchange

η = 0.99 η = 0.61
(a) observed limit order market +00% +00%
Counterfactual simulations:
(b) limit order market, 1ML splits, price as observed +11% +27%
(c) limit order market, 1ML splits, no price shading � +52%
(d) benchmark, batch uniform-price market clearing +18% +58%

Notes: Table reports the percent change of the total surplus of the simulated counterfactual
scenarios from that of the observed exchange.

market orders only.

Next, I simulate a counterfactual exchange that additionally eliminates price shad-

ing. Here, sellers' limit order prices are set equal to their market-facing costs, while

other details of the simulation are the same as in the previous paragraph. Di�erences

between this simulation and that of the previous paragraph isolate the contribution of

price shading. Finally, di�erences between this simulation and the benchmark isolate

the contribution of temporal dispersion and the sorting of buyers and sellers.

Table 5 reports how the simulated total trade surplus generated by these coun-

terfactual scenarios di�ers from that of the observed exchange over the full sample

period. The di�erence between rows (a) and (b) isolates the contribution of bilateral

frictions, i.e., the e�ect of moving from bilateral to multilateral exchange. Interest-

ingly, the 1 ML splits in (b) close about half of the surplus gap between the observed

exchange and the benchmark, (d)-(a). This suggests that ameliorating bilateral fric-

tions could go a long way towards making trade more e�cient while preserving a

continuous-time market. Next, the di�erence between rows (b) and (c) isolates the

contribution of price shading. If η = 0.99, there is e�ectively no price shading, so

there is no di�erence between (b) and (c). But if η = 0.61, there is substantial price

shading, and eliminating that price shading expands trade volume substantially, clos-

ing most of the surplus gap with the benchmark. This is consistent with Table 4,

where volume expansion is a key driver of the benchmark's surplus gains for η = 0.61

but less so for η = 0.99. Lastly, the di�erence between rows (c) and (d) isolates the

contribution of temporal consolidation and sorting the highest value buyers and low-

est cost sellers into trade. Table 5 suggests this element is relatively more important

if there is less price shading, such as when η = 0.99; for a given set of observed limit

order prices, less price shading implies higher seller costs and lower buyer values,
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and e�cient buyer-seller sorting matters more in such an environment. This also is

consistent with Table 4, where the benchmark's gains in surplus-per-unit-traded are

more prominent given η = 0.99 than they are given η = 0.61.

A practical takeaway from this section, robust across low and high η, is that en-

couraging multilateral trade through free volume splits would meaningfully improve

the e�ciency of this market. Compared to a complete overhaul of the market mecha-

nism, this incremental reform could be more readily absorbed into the existing market

system. As implemented in my counterfactual simulations, such a push would need to

be accompanied by a change in state trade approval fee policy so that the fee paid no

longer depends on the number of counterparties through which an order is ful�lled.

7 Conclusion

In this paper, I assess the performance of a limit order market for water through

an empirical analysis of its buy and sell orders and trades. This analysis intersects

the literatures on water markets, industrial organization, and �nance. Combining

order-level exchange data with a model of participants' best-response order type and

order price, I identify the latent values underlying the orders. To provide market

assessments that are robust to realistic behavior, I extend the model to account

for order revision, a range of risk aversion levels, and default choices. I use the

latent values thus identi�ed to counterfactually simulate a performance benchmark

and to decompose the gap between the observed market and the benchmark. In

addition, wide variation in water availability during my sample period combined with

the analysis above allows me to see how di�erent aspects of market performance

interact with drought. I �nd that moving from a system built around bilateral trade

towards more multilateral exchange, where, e.g., a single buy order could be sourced

from more than one seller and vice versa without undue expense, is a policy that

could move the needle on market e�ciency.

There is much more work to be done on water markets, and economists' contribu-

tions to this work will continue to grow. For example, this paper focuses on intra-zone

trades, or trades within one trading zone, which constitute the vast majority of allo-

cation trades in Australia. But the economics of inter -zone trade is also interesting

and could be especially important during times of geographical water imbalance. The

small share of inter-zone trades points to the greater trade frictions involved, and one
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avenue for future research is how to improve the design of inter-zone markets while

respecting the hydrological constraints of crossing zones. Also, this paper studies wa-

ter exchange in a region where the history, hydrology, and institutions were conducive

to an early emergence of formal water markets. An important, ongoing question is

how to design markets in regions like the American West where water rights laws and

hydrological conditions di�er and have so far been less conducive to �ourishing trade.
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A Appendix

A.1 Proofs

Assumption 1S. The execution probability Ps(·|x) for a sell limit order satis�es

(i) Ps(p|x) is strictly decreasing in p.

(ii) Ps(p|x)/P ′
s(p|x) is strictly increasing in p.

(iii) Ps(p|x) < 1.

Assumption 2S. Distribution F r
s (·|ci) of cr,i is weakly stochastically ordered in ci.

Assumption 3S. Regarding the expected pro�t Cs(c, p|x) of revising a limit order,

(i) The seller approximates that Cs(c, p|x) = Cs(c|x).
(ii) r|Cs(c

′|x)− Cs(c|x)| < |c′ − c| for all c′ ̸= c.

Proof of Corrollary 1

Proof. By the envelope theorem, the derivative of Pb(p
∗
r(vr,i|xr,i)|xr,i)(vr,i−p∗r(vr,i|xr,i))

with respect to vr,i is equal to Pb(p
∗
r(vr,i|xr,i)|xr,i) ≥ 0, so this expression is weakly

increasing in vr,i. Then, by the weak stochastic ordering of F r
b (vr,i|vi) given by As-

sumption 2 and the de�nition of Cb(v|x) in equation (3), Cb(v
′|x) ≥ Cb(v|x) for any

v′ > v.

Proof of Proposition 1

Proof. The proof proceeds by showing that 0 < ∂L(v)
∂v

< ∂M(v,ℓ)
∂v

for all v > ℓ. If

this is true, there will be at most one value ṽ(ℓ) > ℓ at which L(v) = M(v, ℓ),

with L(v) > M(v, ℓ) for v ∈ (ℓ, ṽ(ℓ)) and L(v) < M(v, ℓ) for v ∈ (ṽ(ℓ),∞). In

the remainder of this proof, we can focus our attention on v ∈ (ℓ, p∗−1(ℓ)). This is

because, �rst, buyers with v ≤ ℓ will place a limit order because M(v, ℓ) ≤ 0 ≤ L(v)

for v ≤ ℓ. Second, for v such that p∗(v) ≥ ℓ, buyers will place a market order because

it guarantees execution at a weakly better price than the optimal limit order.

By the envelope theorem, ∂L(v)
∂v

= Pb(p
∗(v)) + (1 − Pb(p

∗(v)))rC ′
b(v). Given As-

sumptions 1 and 3, Pb(p
∗(v)) < 1 for p∗(v) < ℓ and rC ′

b(v) < 1. Meanwhile,

Pb(p
∗(v)) ≥ 0 and r ≥ 0 by de�nition of a probability and C ′

b(v) ≥ 0 by Corrol-

lary 1. Thus, 0 ≤ ∂L(v)
∂v

< 1 = ∂M(v,ℓ)
∂v

. This completes the proof.
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Proof that Assumption 1S-(ii) is satis�ed if Ps(·|x) has a probit shape with

Ps(p|x) = Φ(β0 + β1p + β2x), where Φ(·) is the standard normal cdf and β1 < 0 per

Assumption 1S-(i).

Proof. If Ps(p|x) = Φ(β0+β1p+β2x), then Ps(p|x)/P ′
s(p|x) =

Φ(β0+β1p+β2x)
ϕ(β0+β1p+β2x)β1

≡ k(p).

De�ning j(·) ≡ Φ(·)
ϕ(·) , k(p) =

1
β1
j(β0 + β1p+ β2x) and k′(p) = j′(β0 + β1p+ β2x). Since

it is known that Φ(·)
ϕ(·) is a strictly increasing function, j′(·) > 0. Thus, k′(p) > 0.

Proof of Corrollary 1S

Proof. By the envelope theorem, the derivative of Ps(p
∗
r(cr,i|xr,i)|xr,i)(p

∗
r(cr,i|xr,i) −

cr,i) with respect to cr,i is equal to −Ps(p
∗
r(cr,i|xr,i)|xr,i) ≤ 0, so this expression is

weakly decreasing in cr,i. Then, by the weak stochastic ordering of F r
s (cr,i|ci) given

by Assumption 2S and the de�nition of Cs(c|x) in Section 3.4, Cs(c
′|x) ≤ Cs(c|x) for

any c′ > c.

Proof of Proposition 2

Proof. The only part of the identi�cation argument not fully explained in the main

text is the nonparametric identi�cation of Fb(·) and Fs(·) given αb > 0 and αs > 0.

The proof of that step follows. First, consider the buyers. Let the value threshold

ṽ, determining whether a rational buyer chooses a limit order or a market order, be

�xed at an arbitrary value t. Buyers with values v ≥ ṽ = t will either rationally

submit a market order or submit a limit order by default. Thus,

1− Fb(t) =
#{buy market orders|ṽ = t}+#{buy limit orders with v ≥ t|ṽ = t}

#{all (market and limit) buy orders|ṽ = t}
.

Having identi�ed Fb(t) using this ratio of observables, Fb(·|v ≥ t) ≡ Fb(·)−Fb(t)
1−Fb(t)

is

nonparametrically identi�ed as the empirical cdf of all the values associated with

{buy limit orders with v ≥ t|ṽ = t}�this is the set of limit orders submitted by buy-

ers that (mistakenly) default to limit orders, allowing us to identify the shape of Fb(·)
for values above t. Also, Fb(·|v < t) ≡ Fb(·)

Fb(t)
on [0, t) is nonparametrically identi�ed as

the empirical cdf of all the values associated with {buy limit orders with v < t|ṽ = t}.
Since Fb(t) is identi�ed above, identi�cation of Fb(·|v ≥ t) and Fb(·|v < t) implies

identi�cation of Fb(·) over its support.
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Next, consider the analogous argument for sellers. Let the cost threshold c̃, de-

termining whether a rational seller chooses a limit order or a market order, be �xed

at an arbitrary t. Sellers with costs c ≤ c̃ = t will either rationally submit a market

order or submit a limit order by default. Thus,

Fs(t) =
#{sell market orders|c̃ = t}+#{sell limit orders with c ≤ t|c̃ = t}

#{all (market and limit) sell orders|c̃ = t}
.

Having identi�ed Fs(t) using this ratio of observables, Fs(·|c > t) ≡ Fs(·)−Fs(t)
1−Fs(t)

is

nonparametrically identi�ed as the empirical cdf of all the values associated with

{sell limit orders with c > t|c̃ = t}. Also, Fs(·|c ≤ t) ≡ Fs(·)
Fs(t)

on [0, t) is nonparamet-

rically identi�ed as the empirical cdf of all the values associated with {sell limit orders

with c ≤ t|c̃ = t}�this is the set of limit orders submitted by sellers that (mistak-

enly) default to limit orders, allowing us to identify the shape of Fs(·) for costs below
t. Since Fs(t) is identi�ed above, identi�cation of Fs(·|c > t) and Fs(·|c ≤ t) implies

identi�cation of Fs(·) over its support.
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A.2 Supplementary tables, �gures, and descriptions

Table A1: Regression of log sell limit order price on covariates
(1) (2) (3)

daily rainfall (mm) -0.001
(0.003)

daily evapotranspiration (mm) -0.006
(0.003)

weekly mean rainfall (mm) 0.012
(0.005)

weekly mean evapotranspiration (mm) -0.007
(0.005)

monthly mean rainfall (mm) 0.041
(0.010)

monthly mean evapotranspiration (mm) -0.015
(0.006)

fraction entitlement volume allocated to date -0.008 0.000 0.117
(0.050) (0.069) (0.077)

daily storage (log), seasonally adjusted -0.587 -0.617 -0.699
(0.064) (0.068) (0.072)

waterday/366 -0.162 -0.175 -0.261
(0.041) (0.054) (0.063)

volume (log) 0.003 0.003 0.004
(0.003) (0.003) (0.003)

mean trade price, prev week (log) 0.569 0.529 0.489
(0.029) (0.032) (0.033)

st dev of trade price, prev week 0.003 0.003 0.003
(0.001) (0.001) (0.001)

total trade volume, prev week (1000 ML) -0.009 -0.008 -0.007
(0.002) (0.003) (0.003)

ask depth (1000 ML) -0.007 -0.002 -0.001
(0.005) (0.005) (0.005)

bid depth (1000 ML) 0.044 0.043 0.036
(0.008) (0.008) (0.008)

low ask (log) 0.268 0.297 0.327
(0.025) (0.027) (0.027)

bid-ask spread (100 AUD) 0.012 0.013 0.013
(0.003) (0.003) (0.003)

constant 0.932 0.975 1.002
(0.128) (0.133) (0.131)

Observations 2182 2182 2182
R2 0.892 0.892 0.893
Adjusted R2 0.891 0.891 0.892

Standard errors in parentheses
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Table A2: Estimated parameters of P̂s(p|x) and ˆ̃Pb(p|x)
sell buy

limit order price, normalized
polynomial term 1 -0.091 0.087
polynomial term 2 1.3E-04 -0.005
polynomial term 3 9.7E-05 0.001
polynomial term 4 -4.2E-06 -3.0E-05

daily storage (log), seasonally adjusted -2.503 -0.902
volume (log) -0.137 0.009
mean trade price, prev week -0.006 -0.002
st dev of trade price, prev week -3.6E-04 -0.016
total trade volume, prev week (1000 ML) -0.060 0.031
ask depth (1000 ML) 0.104 0.039
bid depth (1000 ML) 0.195 0.037
bid-ask spread (100 AUD) -0.041 -0.052
low ask 0.001
high bid 0.002
waterday/366
Bernstein polynomial term 1 1.117 -4.153
Bernstein polynomial term 2 -0.482 2.872
Bernstein polynomial term 3 -0.006 -2.152
Bernstein polynomial term 4 -0.297 -1.022

constant 1.067 -0.257

Notes: The execution probability for sell limit orders is estimated according
to a probit model, subject to the constraint that the probability is decreas-
ing in price. For buy limit orders, I estimate P̃b(p|x) as de�ned at the end
of Section 5.1.

Table A3: Estimated parameters of lognormal F̂s(c|xw) and F̂b(v|xw)
η = 0.61 η = 0.99

seller buyer seller buyer

θ̂µ θ̂σ θ̂µ θ̂σ θ̂µ θ̂σ θ̂µ θ̂σ
daily storage (log), seasonally adjusted -2.45 -0.84 -2.38 -0.02 -2.69 -1.20 -2.40 -0.29
waterday/366
Bernstein polynomial term 1 -0.08 1.95 0.43 -0.03 0.95 1.30 0.43 -1.69
Bernstein polynomial term 2 -0.33 -1.65 -0.50 0.10 -1.25 -1.97 0.02 3.16
Bernstein polynomial term 3 -1.56 2.33 -0.84 0.03 -0.89 1.55 -1.15 -2.04
Bernstein polynomial term 4 -0.62 -0.36 -0.38 -0.22 -0.47 -0.79 -0.20 0.07

volume (log) 0.07 -0.18 -0.03 2.4E-03 0.02 -0.06 -0.05 3.4E-03
constant 4.55 -0.74 5.52 -1.50 4.93 -1.46 5.43 -1.26

Notes: θµ and θσ are parameters of the distribution Lognormal(xwθµ, xwθσ), where xwθµ and
xwθσ are the mean and standard deviation of ln(v) for buyers or ln(c) for sellers, and xw is a
vector of the covariates listed in the left column.
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Figure A1: Histogram of order-level ĉ versus lognormal F̂s(·|xw)

Notes: These �gures compare the histogram of sellers' estimated order-level costs for
initial limit orders, ĉ, to a histogram of random draws from the estimated lognormal
distribution F̂s(·|xw). The purpose is to check whether the lognormal speci�cation is
a good approximation. Speci�cally, for each ĉi, one draw is randomly drawn from the
lognormal distribution conditional on the covariates xw,i corresponding to that order. The
left �gure is conditional on CRRA parameter 0.61, while the right �gure is conditional on
CRRA parameter 0.99. The �gures are not expected to be identical because F̂s(·|xw) also
includes costs of sellers that placed market orders.
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