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Abstract

This paper performs a structural analysis of sequential auctions with both syn-

ergy and affiliation across auctions. I propose a flexible yet tractable sequential auc-

tion model under the private value paradigm and establish its nonparametric iden-

tification, demonstrating an intuitive and general method for disentangling synergy

from affiliation. After developing an estimation procedure closely tied to the iden-

tification steps, I apply it to data on adjacent oil and gas leases that are auctioned

sequentially. I assess the role played by affiliation versus synergy in the observed

allocation patterns and evaluate the counterfactual policy of bundled auctions.
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1 Introduction

On state trust lands in the New Mexico Permian Basin, adjacent oil and gas leases

are commonly auctioned sequentially on the same day, and these adjacent leases are

often won by the same bidder. This naturally raises the question of whether there

is synergy (or complementarity) between leases and whether policy alternatives like

bundled auctions could increase auction revenue and/or efficiency. The question is

economically significant as the Permian Basin is one of the most prolific oil and gas

basins in the world,1 and leasing land is an important source of funding for the state’s

public institutions. Similar questions arise in sequential auctions of other objects,

where positive synergy can arise due to economies of scale, increased market power,

distribution of fixed costs, or complementarity of contiguous regions, and “negative”

synergy can arise due to capacity constraints or close substitutes.2

While the question would benefit from structural analysis, sequential auctions

linked by synergy present a challenge for modeling and identification. One reason is

that equilibrium derivation is difficult for general sequential auction models.3 As a

result, sequential auctions depend on restrictive assumptions for analysis, leading to a

struggle between tractability and capturing relevant features of the real-world auction.

On the identification front, a difficulty lies in distinguishing synergy from affiliation

of a bidder’s values across auctions. With synergy, the fact that a bidder wins object

1 causes object 2 to be worth more to him; by contrast, affiliation across auctions

means a bidder has similar values for objects 1 and 2 from the start.4 Positive syn-

ergy tends to increase the revenue benefits of bundled auctions over separate auctions

1See www.britannica.com/place/Permian-Basin.
2A non-exhaustive list of examples includes spectrum auctions for AM and FM broadcasting

licenses in New Zealand, cable TV license auctions in Israel (Gandal (1997)), auctions of agricultural
tracts in the U.S. (Colwell and Yavaş (1994)), parcels in Singapore government auctions of residential
and commercial land (Agarwal, Li, Teo, and Cheong (2017)), school milk procurement (Marshall,
Raiff, Richard, and Schulenberg (2006)), truckload procurement for connecting origin-destination
lanes (Mes (2008)), U.S. Bureau of Land Management auctions of mineral (oil, gas, coal) leases in
10+ states, USFS tracts of timber, construction procurement by state transportation departments
including California, Oklahoma, Michigan, etc.

3To my knowledge, no one has characterized the set of equilibria for dynamically linked auctions
with multi-unit demand and unrestricted joint distribution of values, even for the simplest case of
two second-price auctions.

4Suppose a bidder’s value for object 1 is v1, his value for object 2 is v2, and his value for both
objects together is v1+v2+α. Synergy refers to α being non-zero, while affiliation refers to correlation
between v1 and v2. In this paper, I use the term “affiliation” to refer generally to a stochastically
ordered form of correlation; this is weaker than and nests the mathematical definition of affiliation.
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because bundling provides bidders a guarantee that the winner will realize that syn-

ergy (see Subramaniam and Venkatesh (2009) for simulations). Meanwhile, affiliation

can decrease the revenue benefits of bundling by weakening the Schmalensee (1984)

effect.5 There are also cases where synergy recommends unbundling while affiliation

recommends bundling, according to simulations.6 So these are two distinct concepts

that can lead to opposing policy recommendations, but in both cases the winner of

object 1 will win object 2 with higher probability than other bidders. This observa-

tional similarity leads to an identification challenge analogous to that of structural

state dependence versus persistent heterogeneity as highlighted by Heckman (1981).

It also implies that failing to account for affiliation can lead to exaggerated estimates

of synergy and vice versa.

This paper performs a structural analysis of sequential auctions with both synergy

and affiliation across auctions to assess the counterfactual policy of bundling. I apply

my analysis to pairs of adjacent leases in New Mexico, sold sequentially by a first-

price auction followed by an English auction. I address the two challenges described

above as follows. First, I propose a new model of sequential auctions that is flexible

in the relationship between first- and second-auction values and functional form of

synergy yet has a characterizable equilibrium. A key feature of this model is that the

distribution of a bidder’s second value is conditional on his first value at the time of the

first auction. Second, auction data commonly provide bids of both winning and losing

bidders, and I show that this information provides a basis for disentangling synergy

and affiliation (or structural state dependence and persistent heterogeneity). The

basic intuition is to ask whether bidders who bid similarly in the first auction diverge

in subsequent behavior based on winning or losing that auction. This is a widely

applicable identification strategy, which I illustrate with a regression discontinuity

design and make formal in the main structural analysis.

To distinguish synergy and affiliation in a regression discontinuity design, I define

the log difference between one’s first-auction bid and highest competing bid thereof as

the running variable. The running variable equaling zero marks the threshold between

5In Schmalensee (1984), bundling of items captures more surplus for the seller by reducing het-
erogeneity in buyer values. Affiliation weakens this effect because the extent to which bundling
reduces heterogeneity declines with correlation of a bidder’s values across items; in the extreme case
of perfect correlation, bundling does not reduce heterogeneity at all but simply rescales the original
value distribution.

6See simulated example in Online Appendix A.1.
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winning and losing the first auction. A discontinuity in second-auction outcomes at

the threshold indicates a discontinuity between bidders that just barely lost and just

barely won the first auction, identifying the causal effect of winning – synergy –

separately from affiliation.

To channel this intuition into a structural analysis, I model a sequence of auc-

tions under the private value paradigm,7 allowing both synergy and affiliation to take

general functional forms. The timeline of my model proceeds as follows. At the first

auction, bidders know their value for the first object, but their value for the second

object might be uncertain or open to adjustment until the time of the second auc-

tion; the passage of time between auctions and events taking place therein can affect

valuations. So bidders may not know their second value exactly at the time of the

first auction, but they do know the distribution from which their second value will

be drawn. To allow for affiliation, that distribution is conditional on their value for

the first object. I place few restrictions on this conditional distribution, allowing a

flexible relationship between a bidder’s values for the first and second object. Bid-

ders do learn their exact value for the second object at the beginning of the second

auction. The distribution of second values being conditional on first values helps the

model retain both flexibility and a characterizable equilibrium.

Meanwhile, bidders observe all bids and bidder identities from the first auction

and hence know whether they won before bidding in the second auction. The bidder

that won the first auction is affected by synergy, so his value going into the second

auction is not just the stand-alone value of the second object, but a synergy-inclusive

value. I define a synergy function that gives this synergy-inclusive value as a function

of a bidder’s stand-alone values for each object. Then in the first auction, bidders bid

in light of not only their value for the first object, but also the expected benefit in

the second auction from winning the first auction. Under some assumptions, I show

that bids in the first auction are strictly increasing in a bidder’s value for the first

object, and there exists a unique Bayes-Nash equilibrium in the first auction.

I establish nonparametric identification of the model primitives from observable

data. The primitives are the joint distribution of first-auction and second-auction

values and the synergy function, while the observable data include all bids in the

first auction, the transaction price in the second auction, and bidder identities. In

particular, the synergy function is identified by comparing the second-auction value

7Justification for the private value paradigm is discussed in Section 2.
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distributions of a first-auction winner and first-auction loser conditional on the same

first-auction bid. This conditioning neutralizes affiliation and isolates the effect of

synergy, since the first-auction winner benefits from synergy while the loser does

not. The strategy is intuitive yet powerful enough to identify the synergy function

nonparametrically. Closely following the identification steps, I develop a nonpara-

metric multi-step estimation procedure that estimates the structural parameters of

the auction model.

In the New Mexico auction data, I find both synergy and affiliation between leases,

though affiliation is primarily responsible for the observed pattern in which the same

bidder often wins adjacent leases. This result highlights the importance of allowing for

affiliation across auctions. Counterfactual simulations reveal that bundled auctions

would yield higher auction revenue than sequential auctions, on the order of 7 percent.

They would also lead to a loss in allocative efficiency.

The paper’s insights for modeling and identification extend beyond my empirical

application. First, they are not unique to the first-price-then-second-price sequence

observed in my data. I discuss extensions to two second-price auctions and to two

first-price auctions in the Online Appendix. Second, objects in the sequence can have

different covariates and be linked by positive or negative synergy; the model and

identification argument do not restrict these. Third, the model extends to sequences

longer than two, as I discuss in section 7.3. Finally, the basic insight of using similar

bids to distinguish confounding elements is more broadly useful: the second event

in the sequence need not be an auction. Suppose the causal effect of an acquisition

(first event) on the acquirer’s subsequent performance (second “event”) needs to be

disentangled from selection; high-bidding firms tend to be high-performing firms. If

the acquisition procedure generates bids, they could be used to compare marginal

winners and losers and isolate the causal effect.

The rest of the paper is organized as follows. The remainder of Section 1 pro-

vides a discussion of the related literature. Section 2 describes the data and empirical

evidence. Section 3 develops the model. Section 4 establishes nonparametric iden-

tification of the model, while Section 5 develops an estimation procedure. Section 6

describes estimation details specific to the data at hand and discusses the estimation

results. Section 7 performs counterfactual simulations of interest including those for

bundled auctions. Section 8 concludes. The Online Appendix collects all proofs.
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Related literature

This paper relates to three areas of literature: sequential auctions, synergy in auc-

tions, and affiliation, which I discuss in turn. When bidders are unrestricted in the

number of auctions they can win, a sequence of auctions is “sequential” only if they

are dynamically linked for some reason, e.g. synergy in this paper. Examples in

the theory literature include among others Ortega-Reichert (1968), Hausch (1986),

Caillaud and Mezzetti (2004), and Benoit and Krishna (2001). This literature illus-

trates the difficulty of deriving equilibria for general sequential auctions. To make

progress, papers restrict their analysis to two auctions and specialized models, e.g.,

a bidder’s values for the two goods are the same, all bidders share the same values,

bidders are represented by a single type variable, or values are independent across

auctions and learned one at a time. Katzman (1999) and Lamy (2012) study sequen-

tial second-price auctions of two commodity goods. A bidder’s value for his first unit

of a commodity is the same regardless of which unit in the sequence he wins.

The empirical literature about sequential auctions begins with Ashenfelter (1989)’s

study of wine auctions and includes among others Gandal (1997) and De Silva et al.

(2005), whose regression analyses find evidence of synergy in real-world sequential

auctions. Within that literature, structural econometric work on sequential auctions

largely falls into two categories. The first category is sequential auctions of com-

modity goods as defined in the previous paragraph. Examples include Donald et al.

(2006), Brendstrup and Paarsch (2006), Lamy (2010), and Donna and Esṕın-Sánchez

(2018). In the second category, a bidder’s value draws are independent across the

sequence, conditional on his state. Dynamics arise because this state variable is af-

fected by winning or entering previous auctions. Examples include Jofre-Bonet and

Pesendorfer (2003) and Balat (2017) where the state variable captures bidders’ ca-

pacity constraints, and Groeger (2014) where the state variable captures learning by

doing in bid preparation. For clarity of comparison, these are sequential auctions

with a form of synergy (broadly defined) but no affiliation.

There is also a literature on synergy in non-sequential auctions. Synergy is stud-

ied by Ausubel et al. (1997), Moreton and Spiller (1998), and Fox and Bajari (2013)

among others in simultaneous ascending PCS auctions; Marshall et al. (2006) and

Gentry et al. (2016) in simultaneous first-price auctions; and Cantillon and Pesendor-
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fer (2006) in combinatorial first-price auctions.8

Finally, affiliated values in non-sequential auctions have been analyzed in theory

and empirics by papers ranging from Milgrom and Weber (1982) and Pinkse and Tan

(2005) to Laffont and Vuong (1996), Li, Perrigne, and Vuong (2002), Hubbard, Li,

and Paarsch (2012), Li and Zhang (2015), Balat (2016), and Somaini (2018), among

others. While these papers study affiliation across bidders within a single auction, I

study affiliation across a sequence of auctions within bidder, a phenomenon that can

confound measures of synergy unless properly distinguished.

2 Data

2.1 Overview

In oil and gas producing parts of the New Mexico State Trust Lands, the State Land

Office (SLO) auctions leases for oil and gas development. Much of this leasing occurs

in the Permian Basin, where knowledge of the geology is mature due to a long history

of development dating back to the 1920s. Valuations of leases vary idiosyncratically

among bidders; empirical evidence, discussed at the end of section 2.2, reveals the

importance of a private component to bidders’ values.

The terms of a lease, including its duration and production royalties due to the

SLO, are made public well before its auction. While there is some variation, the

amount of land most commonly covered by an oil and gas lease is a rectangle of 320

acres, or half a square mile.9 Therefore, a section, which is a one square mile block,

produces two such leases. Often, these two leases are auctioned on the same day. I

will refer to two such leases as a “pair.” The focus of study in this paper are pairs

that were auctioned in the Permian Basin area during 2000-2014.

The SLO uses two auction formats, the first-price sealed-bid format and the En-

glish auction format. For pairs, the SLO has a convention of selling one of the leases

by first-price sealed-bid and the other lease by English auction later in the day. The

English auction always occurs later. Thus the two leases in a pair are auctioned in a

8Specifically, Marshall et al. (2006) model a constant synergy parameter in school milk auctions;
Gentry et al. (2016) model synergy as a function of auction and bidder characteristics in highway
procurement auctions; Cantillon and Pesendorfer (2006) model a free form of synergy to fit observed
combinatorial bids in bus route auctions.

9The SLO prefers this size because it is long enough to allow horizontal drilling and is at least as
large as the spacing units required for oil wells (40 acres) and gas wells (320 acres) by state rules.
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sequence. In this paper, I refer to the earlier auction as the “first auction” and the

later auction as the “second auction.” To be clear, the two leases of a pair are not

the only items being auctioned on a given day, nor are they auctioned back to back;

in 2000-2014, the average number of Permian Basin leases auctioned on a single day

was 39. In terms of observable data, I observe all bids and bidder identities for the

first-price sealed bid auction. For the English auction, I observe the transaction price

and the identity of the winner only; the data does not record the number of bidders.

Table 1 displays the number of pairs observed by N , which is the number of bidders

in the first-price sealed bid auction.

Table 2 displays within-pair statistics. The auction prices of paired leases are

highly correlated, consistent with the geological similarity of adjacent leases. 93%

of bidders winning the second auction (“A2”) also participate in the first auction

(“A1”). This is consistent with conversations with SLO staff; bidders interested in

one half of a section are typically interested in the other half as well. Meanwhile, the

probability that both leases in a pair will be won by the same bidder is higher than it

would be if all A1 participants had an equal chance of winning A2. This shows that,

at a simple correlation level, the winner of A1 is more likely to win A2 than other

bidders.10

2.2 Evidence of synergy and affiliation

Why is the winner of A1 more likely to win A2? It is possible that the two leases are

linked by synergy for various reasons. First, as noted in Sunnev̊ag (2000), adjacent

leases can generate cost savings by reducing travel time and eliminating duplicates for

equipment and crews. Second, in recent years much of the drilling in New Mexico has

been horizontal; with permission from government authorities, adjacent leases can

be put together to form a “project area” where horizontal wells can be drilled across

lease borders.11 For these and other reasons, there may be extra value to winning two

adjacent leases beyond the sum of one’s values for each lease individually. Intuitively,

this synergy gives the winner of the first auction (“A1”) a boost in winning the second

auction (“A2”); the second lease becomes more valuable to him as a consequence of

10To check this correlation more formally, I perform a probit analysis in Online Appendix A.5,
Table 8. In every specification, winning the first auction has a highly significant positive “effect” on
the observed probability of winning the second auction.

11In the absence of permission, rules specify how far wells must be from unit boundaries. It is
forbidden to access oil and gas outside lease boundaries.
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winning the first.

However, the phenomenon could also be due to affiliation of a bidder’s stand-

alone values for the first (v1) and second lease (v2), in which a bidder with high v1

is more likely to have a high v2 to begin with. This concept is distinct from synergy

as it concerns the correlation of values for individual tracts and has nothing to say

about whether their sum is superadditive. If a firm views one tract favorably, it will

probably view the adjacent tract favorably as well, given the similar location and

geology. Not only can this lead to mismeasurement of synergy, an object of interest,

but synergy and affiliation can also lead to opposing recommendations for auction

design.

One way to explore the issue of synergy versus affiliation is to use a regression

discontinuity design. For each bidder in the first auction, define

z ≡ ln(b)− ln(highest competing b)

where b is his bid in the first auction. Then z > 0 indicates an A1 winner, and z < 0

indicates an A1 loser. A large |z| indicates a large gap between the first and second

highest bids in A1. If bidders’ v1 and v2 are affiliated, a larger |z| makes it more likely

that the same bidder will win both A1 and A2. On the other hand, if |z| is very small,

this means the A1 winner just barely won. In the absence of synergy, such a bidder

should not be much more likely to win A2 than if he just barely lost. This is the idea

I exploit to detect synergy; I look for a discontinuity in the probability of winning A2

at z = 0.12 Formally, I seek to measure β = y+−y−, where y+ ≡ limz→0+E[yi|zi = z]

and y− ≡ limz→0−E[yi|zi = z]. As proposed in Hahn, Todd, and Van der Klaauw

(2001), I use local linear regression to estimate y+ and y−.

An RD plot of the data for the most frequent bidder is displayed in Figure 1.

Two features of Figure 1 stand out. First, the probability of winning the second

auction is increasing in z. This is consistent with affiliation of values, which makes a

bidder’s value for the first lease predictive of his value for the second lease. Second,

there is a discontinuity at z = 0, consistent with synergy between adjacent tracts.

The associated local linear regression results are shown in Table 3.13 Columns (2)

12As an earlier example of exploiting the idea of RD in the auctions literature, Kawai and
Nakabayashi (2014) examine bidders who narrowly won the first round of a multi-round auction,
and find evidence of collusion in their persistent ranking in subsequent rounds.

13Figure 1 and Table 3 are obtained using the software packages described in Calonico, Cattaneo,
and Titiunik (2014a). The second row of Table 3 corrects for the bias in conventional RD estimates
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and (3) include fixed effects and interactions involving the number of bidders. There

are suggestive indications of synergy, both in the plot of data and in the estimation

results. The estimated jump in the probability of winning is roughly 0.2.

Figure 1 also suggests the presence of an idiosyncratic component to bidders’

values. Note that all bidders learn all the bids submitted for the first lease before

bidding on the second lease right next to it. Yet the probability of winning the

second lease slopes upward steeply as a function of the first-auction bid, suggesting

that idiosyncracies in valuation persist even after seeing all the other firms’ bids.

Finally, Table 4 performs a probit analysis of winning A2, including as regressors z

as defined above and an interaction of z with the number of auctions whose outcomes

are realized between A1 and A2. The negative coefficient on the interaction says

the number of intervening auctions attenuates the relationship between z and the

probability of winning A2. This suggests that intervening auctions and time are a

source of uncertainty and bidders may adjust their bids as the auction day proceeds.

3 A model of sequential auctions with synergy and

affiliation across auctions

3.1 Setup

A pair of objects is sold via auction. One object is sold by a first-price sealed-bid

auction, and the other is sold by an English auction, which happens later chronolog-

ically. There are N ex-ante symmetric bidders. Before bidding in the first auction,

each bidder draws a value v1 ∼ F1(·) which is his stand-alone, private value for the

object in the first auction.

Between the first auction (A1) and second auction (A2), there might be noise

that affects bidders’ values for the second object. I elaborate on this later. Therefore,

bidders may not know their stand-alone value for the second object (v2) with certainty

at the time of the first auction. However, they do know the distribution from which v2

will be drawn. That distribution is conditional on v1 to allow for affiliation between

v1 and v2: v2 ∼ F2(·|v1). A special case would be that E[v2|v1] = v1, but the model is

more general. Another special case is that F2(·|v1) has arbitrarily small variance or

as discussed in Calonico, Cattaneo, and Titiunik (2014b), and the third row increases the standard
error to account for the fact that this bias is itself estimated.
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is degenerate, so that v2 is known with certainty at A1. For non-degenerate F2(·|v1),

the exact value of v2 is learned after the first but before the second auction.

The bidder that won the first auction benefits from synergy, so his value going

into the second auction is not just the stand-alone value v2 but a synergy-inclusive

value which I define as s(v1, v2). Positive synergy means s(v1, v2) > v2; “negative

synergy” means s(v1, v2) < v2. I allow the synergy function s(·, ·) to be a function

of both v1 and v2 to be as general as possible. The size of synergy is private to each

bidder, since it is a function of v1 and v2, which are different for each bidder and

private information. For convenience of notation I define the distribution of s(v1, v2)

conditional on v1 as follows: D(x|v1) ≡ Pr(s(v1, v2) ≤ x|v1). So winners of A1 draw

their synergy-inclusive value for the second object from the distribution D(·|v1). I

assume that the same set of bidders participate in the first and second auction.

Now I discuss the ideas underlying this model. I do not explicitly model the source

of noise between the first and second auction as sources can vary. As evidenced in

Table 4, one source of noise is other auctions that take place in between the two sales

that affect bidders’ valuations by the time of the second auction. When the sequence

is spread out in time, noise can come from the passage of time and events taking

place therein.14

The distribution of v2 is conditional on v1, but it is not conditional on any other

private information. The underlying assumption is that v1 is a sufficient statistic for

any private, bidder-specific info known at the time of A1 that a bidder’s F2(·|·) could

depend on. The assumption is reasonable when the objects are related in a way that

determinants of private value “shocks” are similar. This is a distinct notion from

observable similarity; objects in A1 and A2 may have different descriptive covariates.

In contexts where this does not apply, the alternative is to have a separate private

signal for the second object at the time of the first auction. However, general multi-

dimensional types with one bid at a time raise issues for characterizing equilibrium.

As I derive equilibrium bids in this model, I make the following assumptions.

AS1 (v1, v2) are independent across bidders.

AS2 F1(·) is differentiable, with positive, finite, and continuous density f1(·).
14In Marshall et al. (2006), school milk procurements take place from May through August of

each year, and in Gandal (1997), Israeli cable TV licenses are auctioned over a period spanning
1988-1991.
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AS3 F2(·|·) and D(·|·) are differentiable in both arguments, with positive, finite

densities f2(·|·) and d(·|·) continuous in both arguments, and have the same compact

support ∀v1.

AS4 F2(·|v1) is stochastically ordered in v1; i.e. for v′1 > v1, F2(x|v′1) ≤ F2(x|v1)

∀x.

AS5 |E[v2|v1]− E[v2|v′1]| ≤ |v1 − v′1|

AS6 ∂s(v1,v2)
∂v1

≥ 0 and ∂s(v1,v2)
∂v2

≥ 0.

AS1 means that while values can be affiliated across auctions, they are independent

across bidders. AS3, which says all bidders bidding in the second auction draw

their values from the same support, is an assumption included for completeness as it

provides for full identification of the value distributions. It is not a critical assumption

in the sense that, if the supports are different, the value distributions will be identified

only where the supports overlap.15 AS4 defines precisely what I mean by “affiliation”

in this paper; it means that a bidder with higher v1 is weakly more likely to have

a higher v2. This assumption speaks to correlation between the stand-alone values

of items 1 and 2 and is unrelated to synergy, i.e. whether s(v1, v2) > v2. It is

used in establishing monotonic bidding in the first auction, along with the remaining

two assumptions that follow. AS5 resembles a Lipschitz condition and rules out

extreme movements or divergence of the expected value of v2 as a function of v1.

This assumption is easy to verify in data once F2(·|·) is estimated. AS6 says that

s(v1, v2), the synergy-included value of the second object, is a nondecreasing function

of v1 and v2. This does not rule out “negative synergy”, or s(v1, v2) < v2. Rather, it

means that if a firm’s stand-alone value for an object increases, the firm’s synergy-

included value for the object does not decrease, all else equal.

3.2 Bidding in the sequential auctions

Working backwards, I discuss bidding in the second auction before going to the first

auction. The second auction is an English auction. Under the private value paradigm,

15Online Appendix A.1 provides further discussion.
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it is weakly dominated for a bidder to drop out below his value for the object. For

the bidder who won the first auction, this value is s(v1, v2). For all other bidders,

this value is v2. For the sake of providing intuition, the explanatory text takes the

perspective of positive synergy; however, the derived results do not depend on synergy

being positive.

Before moving on to the first auction, it is useful to introduce some notation that

simplifies the expected profit function for bidders. Though the model is different, I

follow the notation used by Lamy (2012). The distribution of the highest competing

bid a bidder faces in the second auction given that he wins the first auction and the

highest competing bid there is t is

H1(u|t) = F̃2(u|b ≤ t)N−2F̃2(u|b = t). (1)

To explain, the probability that the highest competing bid he faces in A2 is less than

u is equal to the probability that all bidders other than him have values less than u

for the second item. Since the highest competing bid in A1 is t, the other bidders in

A2 consist of one bidder who bid t in A1 and N − 2 bidders who bid less than t in

A1. The right-hand side of (1) expresses the probability that all of these competing

bidders have values less than u. The subscript 1 on H(·|·) indicates the bidder won

the first auction.

Next, the distribution of the highest competing bid a bidder faces in A2 given

that he loses A1 and the highest competing bid there is t is

H2(u|t) = F̃2(u|b ≤ t)N−2D̃(u|b = t). (2)

The subscript 2 on H(·|·) indicates the bidder lost the first auction. The right-hand

side of (2) is the same as that of (1) except that D̃(u|b = t) replaces F̃2(u|b = t).

Having lost A1, the bidder knows he will be competing against the winner of A1, who

benefits from synergy. Therefore, H2(·|·) is different from H1(·|·) if synergy exists.

Now I consider bidding in the first auction (A1), which is a first-price sealed-bid

auction, supposing for now a symmetric equilibrium. Let G(·) be the distribution of

bids in this auction, so that GN−1(·) is the distribution of the highest bid out of N−1

bidders. The expected profit from the two auctions at the time of the first auction,

where the bidder bids b is
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π(v1, b) =

v̄ˆ

v2=v

{ bˆ

t=b

(
v1 − b+

s(v1,v2)ˆ

u=v

(s(v1, v2)− u)dH1(u|t)
)
dGN−1(t)

+

b̄ˆ

t=b

v2ˆ

u=v

(v2 − u)dH2(u|t)dGN−1(t)

}
dF2(v2|v1).

The outer integral over v2 reflects potential uncertainty over v2 at the time of the

first auction. The first expression inside the outer integral represents the case where

the bidder wins A1, and the second expression represents the case where the bidder

loses A1. Notice that when he wins A1, he benefits not only from v1− b but also from

two facts: 1) the second item is now worth s(v1, v2) to him rather than just v2 due to

synergy, and 2) none of his competitors in A2 have this synergy, resulting in weaker

competition than otherwise, i.e. H1(·|·) versus H2(·|·).
A bidder will bid the b that maximizes his expected profit π(v1, b). Taking the

derivative of π(v1, b) with respect to b and setting it equal to zero gives the first-order

condition. Using integration by parts and rearranging, the first-order condition can

be simplified to (3).

b = v1 +

v̄ˆ

v2=v

{ s(v1,v2)ˆ

u=v

H1(u|b)du−
v2ˆ

u=v

H2(u|b)du
}
dF2(v2|v1)

︸ ︷︷ ︸
expected benefit in A2 of winning A1

− G(b)

(N − 1)g(b)
. (3)

It is instructive to compare this first-order condition to that of a stand-alone first-

price auction. From Guerre, Perrigne, and Vuong (2000), the first-order condition for

a stand-alone first-price auction is b = v1 − G(b)
(N−1)g(b)

. In (3), there is an additional

term on the right-hand side that represents the expected benefit in the second auction

from winning the first auction. Namely, winning the first auction increases a bidder’s

value for the second object from v2 to s(v1, v2) and weakens competition by preventing

synergy for other bidders. So v1 in the usual first-order condition is replaced by v1

plus the expected benefit of synergy in my model. If there is no synergy for bidders,

i.e. s(v1, v2) = v2, then (3) collapses to b = v1 − G(b)
(N−1)g(b)

, as in Guerre et al. (2000).
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3.3 Equilibrium properties

Given AS1-AS6, I show that it is impossible for a strictly lower first-auction bid to

be a best response for a strictly higher value.16 Also, the right-hand side of (3) is

strictly increasing in v1, so a single bid cannot be a best response for two different

values. A proof along these lines leads to the following proposition.

Proposition 1. In any symmetric equilibrium, the bid function b(v1) in the first

auction is strictly increasing in v1.

Since the bid function is strictly increasing, it is invertible in a given equilibrium.

Functions of v1 can be converted to functions of b. For instance, F2(v2|v1 = x) =

F̃2(v2|b = b(x)) and F̃2(v2|b) retains the stochastic ordering property of F2(v2|v1).

Similarly, if I define a new function s̃(·, ·) such that s̃(b(v1), v2) = s(v1, v2), s̃(·, ·)
retains the weak monotonicity of s(·, ·). Replacing F2(v2|v1) with F̃2(v2|b) and s(v1, v2)

with s̃(b, v2) in (3) and rearranging defines the inverse bid function:

ξ(b) ≡ b+
G(b)

(N − 1)g(b)
−

v̄ˆ

v2=v

{ s̃(b,v2)ˆ

u=v

H1(u|b)du−
v2ˆ

u=v

H2(u|b)du
}
dF̃2(v2|b) = v1. (4)

Likewise, functions of b can be converted to functions of v1. In particular, H1(u|b)
and H2(u|b) can be replaced with H̃1(u|ξ(b)) and H̃2(u|ξ(b)), and G(b) can be replaced

with F1(ξ(b)). After some algebra, this gives the following differential equation that

must be satisfied in equilibrium:

dP (v1)

dv1

= T (v1)
d

dv1

[F1(v1)N−1], (5)

where P (v1) ≡ b(v1)F1(v1)N−1 is the bidder’s expected payment and

T (v1) ≡ v1 +

v̄ˆ

v2=v

{ s(v1,v2)ˆ

u=v

H̃1(u|v1)du−
v2ˆ

u=v

H̃2(u|v1)du

}
dF2(v2|v1)

︸ ︷︷ ︸
expected benefit in A2 of winning A1

.

16What I show here implies that the individually rational tieless single crossing condition as defined
in Reny and Zamir (2004) is satisfied.
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Equation (5) is similar to the equilibrium condition for a stand-alone first-price auc-

tion as studied in Riley and Samuelson (1981), except that T (v1) takes the place of

what was v. Solving this differential equation leads to Proposition 2.

Proposition 2. There is a unique symmetric Bayes-Nash equilibrium for the first

auction, given by b(v1) =
´ v1
v
T (x)dF1(x)N−1/F1(v1)N−1 and b(v) = T (v). The bid-

der’s expected payment is
´ v1
v
T (x)dF1(x)N−1.

If there is no synergy, T (v1) = v1; if synergy is positive, T (v1) > v1, and if it is

negative, T (v1) < v1. This means the bidder’s expected payment
´ v1
v
T (x)dF1(x)N−1

and auction revenue in the first auction are higher (lower) when synergy is positive

(negative) than when synergy is zero; i.e. there is a synergy premium.

3.4 Risk aversion

The model of sequential auctions with synergy can also be extended to the case

where bidders are risk-averse. Since the second auction (A2) is an English auction, it

remains weakly dominated for a bidder to drop out below his value, regardless of risk

aversion. However, risk aversion does affect bidding in the first auction (A1), which

uses the first-price sealed-bid format. Also, risk aversion changes the extent to which

the second auction affects bidding in the first auction.

Let U(·) be a twice continuously differentiable utility function with U(0) = 0,

U ′(·) > 0, and U ′′(·) ≤ 0. Expected profit at the time of the first auction is

π(v1, b) =

v̄ˆ

v2=v

{ bˆ

t=b

s(v1,v2)ˆ

u=v

U(v1 − b+ s(v1, v2)− u)dH1(u|t)dGN−1(t)

+U(v1 − b)
bˆ

t=b

v̄ˆ

u=s(v1,v2)

dH1(u|t)dGN−1(t)

+

b̄ˆ

t=b

v2ˆ

u=v

U(v2 − u)dH2(u|t)dGN−1(t)

}
dF2(v2|v1).

(6)

All profits now show up inside the utility function U(·). The first expression inside

the outer integral represents the case where a bidder wins both auctions, the second
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expression is the case of winning only the first auction, and the third expression is

the case of winning only the second auction.

From the perspective of bidders in the first auction, the second auction is like a

lottery. When bidders are risk-averse, this lottery has a lower certainty equivalent and

is discounted relative to the case of risk neutrality. Thus, as bidders grow more risk-

averse, the second auction matters less; at very high levels of risk aversion, bidding

in A1 converges to that of a stand-alone first-price auction.

Risk aversion can lead to higher or lower revenue in A1 compared to the risk

neutral case, as there are two opposing forces. On the one hand, risk aversion pushes

bidders to bid more in a first-price auction because they want to buy insurance against

the possibility of losing. On the other hand, risk aversion causes bidders to discount

uncertain payoffs from A2 when they bid in A1 (as discussed in the previous para-

graph), and this decreases the synergy premium in A1 bids.

4 Identification

In this section, I show that the model primitives, meaning the value distributions

F1(·), F2(·|·), and the synergy function s(·, ·), are identified from observable data,

which are the joint distribution of first auction bids and second auction prices, along

with bidder identities. The intuition behind this identification result is as follows:

suppose we observe two ex-ante symmetric bidders submit identical bids in the first

auction, but one of them wins and the other loses. The fact that they bid the same

means they had the same v1. If winning the first auction has no effect on bidders’

values for the second item, the winner should behave no differently than the loser in

the second auction. By comparing the behavior of the winner and the loser, I can

measure the synergy that comes from having both objects. Online Appendix A.2

provides extensions to asymmetric bidders, a sequence of two second-price auctions,

and a sequence of two first-price auctions.

4.1 Identification

The identification strategy begins by looking at the second auction, and then proceeds

back to the first auction.
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Proposition 3. F1(·), F2(·|·), and s(·, ·) are identified from all the bids in the first

auction, the transaction price in the second auction, and bidder identities. They

can be recovered by following these steps: (i) The value distributions involved in the

second auction, F̃2(·|b) and D̃(·|b) are identified from observables. (ii) Once F̃2(·|b)
and D̃(·|b) are known, the synergy function s̃(b, ·) is nonparametrically identified. (iii)

Using F̃2(·|b) and s̃(b, ·), F1(·) is identified nonparametrically from bids in the first

auction. (iv) F̃2(·|b) and s̃(b, ·) can be converted to F2(·|v1) and s(v1, ·).

The identification argument for step (i), presented in the proof, is based on Athey

and Haile (2002). In their Theorem 2, Athey and Haile (2002) show that the value

distributions of asymmetric IPV bidders are identified from transaction prices and

winner identities. When it comes to the second auction in the model, the first auction

induces asymmetry between bidders that were ex-ante symmetric. Specifically, the

winner w1 of the first auction draws his second value from D̃(·|bw1), and each loser i

from the first auction draws from F̃2(·|bi). For a fixed set of first-auction bids {bi},
we can apply Theorem 2 of Athey and Haile (2002), so each of these distributions is

identified from transaction prices and winner identities in the second auction.

Step (ii) says that having identified F̃2(·|b) and D̃(·|b), the synergy function s̃(·, ·)
is also identified. As mentioned at the beginning of the identification section, the

intuition is to compare how a first-auction winner and first-auction loser behave dif-

ferently in the second auction when they are otherwise identical, even to the point

of having the same v1. We can do just this by comparing F̃2(·|b) and D̃(·|b); by con-

ditioning on b(v1), we compare two bidders who only differ in that one of them won

the first auction while the other did not. Therefore, the difference between F̃2(·|b)
and D̃(·|b) can be attributed to synergy. More precisely, recall that F̃2(·|b) is the

distribution of v2|b and D̃(·|b) is the distribution of s̃(b, v2)|b. Since s̃(b, v2) is weakly

increasing in v2, s̃(b, ·) must map the α-quantile of F̃2(·|b) to the α-quantile of D̃(·|b).
Since F̃2(·|b) and D̃(·|b) are identified, this mapping provides for nonparametric iden-

tification of s̃(·, ·). Figure 2 illustrates the idea graphically; the function s̃(b, ·) maps

the origin of each arrow to the destination of that arrow.

In step (iii), having identified F̃2(·|b) and s̃(b, ·), F1(·) can be identified using

the inverse bid function (4) for the first auction. The inverse bid function can be

computed at this stage because its components - F̃2(·|b) and s̃(b, ·) as well as the

observed bid distribution G(b) - are identified. Since bids b(v1) are monotonic in v1,

any quantile of v1 can be recovered by computing the inverse bid function for that
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quantile of b, and this recovers F1(·) nonparametrically.

Finally, step (iv) ties the remaining loose ends. Denote the α-quantile of v1 and b

by v1(α) and b(α), respectively. Then F2(v2|v1(α)) = F̃2(v2|b(v1(α))) = F̃2(v2|b(α)),

and s(v1(α), v2) = s̃(b(v1(α)), v2) = s̃(b(α), v2). Now all the primitives of the model,

F1(·), F2(·|·), and s(·, ·), are identified.

The logic of the identification argument reveals that, for purposes of disentangling

synergy and affiliation, the exact bid function in the first auction need not be known.

Neither need we know the bidders’ utility function. Knowledge of the bid function’s

monotonicity is sufficient for steps (i) and (ii) above. Of course, identification of

F1(·) (step (iii)) would no longer be possible, but in some applications identifying

synergy is the main object of interest. What can we say about identification if the

synergy function s(v1, v2) is stochastic? The stochastic component of synergy is not

separately identified, i.e. data generated by such a model is fully rationalized by a

model with a deterministic synergy function, namely the one constructed by following

the identification steps above.

4.2 Identification with risk aversion

Steps (i) and (ii) in Proposition 3 apply even with risk-averse bidders, since bidding

strategies in the second (English) auction are unaffected by risk aversion. This means

F̃2(·|b) and s̃(b, ·) are identified regardless of risk aversion. The functions U(·) and

F1(·) remain to be identified.

Replacing s(v1, v2) with s̃(b, v2) and F2(v2|v1) with F̃2(v2|b) in the first-order con-

dition for risk-averse bidders yields

G(b)
(N−1)g(b)

=
´ v̄
v2=v
{
´ s̃(b,v2)

u=v
U(v1 − b+ s̃(b, v2)− u)dH1(u|b)

+
´ v̄
u=s̃(b,v2)

U(v1 − b)dH1(u|b)−
´ v2
u=v

U(v2 − u)dH2(u|b)}dF̃2(v2|b)/´ v̄
v2=v
{
´ s̃(b,v2)

u=v
U ′(v1 − b+ s̃(b, v2)− u)dH1(u|t ≤ b)

+
´ v̄
u=s̃(b,v2)

U ′(v1 − b)dH1(u|t ≤ b)}dF̃2(v2|b).
(7)

Every term on the right-hand side is observed or identified except for v1 and U(·).
Meanwhile, with U ′(·) > 0 and U ′′(·) ≤ 0 under risk aversion, the right-hand side is

strictly increasing in v1. This means that if I know U(·), I can use this first-order

condition to uniqely back out the v1 associated with any bid b. The only remaining
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piece then is to identify U(·), or the risk aversion level.

If the stand-alone value of auction items, conditional on having the same char-

acteristics, should have similar distributions regardless of placement in the auction

sequence,17 this can be used to identify the risk aversion parameter ρ, in the spirit

of Lu and Perrigne (2008). The unconditional distribution of stand-alone values in

A2, given by F2(v2) =
´
F2(v2|b)dG(b), is identified independently of ρ. Meanwhile,

ξ(b, ρ), the inverse bid function for A1 defined by (7), does depend on ρ. The risk

aversion parameter is identified if there is a unique value of ρ that satisfies the ap-

propriate criterion of similarity between the distribution F2(·) and the distribution of

ξ(b, ρ) for b ∼ G(b). In particular, we know from auction theory that bidders at the

bottom of the value distribution bid without markup. Therefore, of the two opposing

effects of risk aversion discussed at the end of section 3, only the second one – the

decrease in the certainty equivalent value of A2 – is operative at v1 = v. As a result,

ξ(b, ρ) is monotonic in ρ, and there is a unique ρ that satisfies ξ(b, ρ) = F−1
2 (0).

5 Estimation

5.1 A multi-step estimation procedure

I develop a multi-step estimation procedure that closely follows the identification

steps. Following the identification strategy in section 4.1, the first step estimates

D̃(·|b) and F̃2(·|b), which are the distributions of second auction values for the first-

auction winner and loser, respectively, conditional on the first-auction bid. For this

task I use a sieve maximum likelihood estimator with Bernstein polynomial bases.18

Specifically, in the second auction I observe for each item the transaction price

p, the identity of the winner, and the identity and bids of all bidders in the related

first auction. Taking the case of N = 2 (two bidders in the first auction) as an

expositional example, let d̃(·|·) and f̃2(·|·) be the derivatives with respect to the first

argument of D̃ and F̃2, and let bw1 and bl1 be the first-auction bids of the winner and

17In Online Appendix A.5 I check that there is no statistically significant difference in post-auction
production between A1 and A2 leases.

18General properties of sieve estimators, including sieve maximum likelihood, are discussed in
Chen (2007). Bierens and Song (2012) is another example of sieve estimation for auctions, and
Komarova (2017) is an example of using Bernstein polynomials in particular for the ascending
auction framework.
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loser, respectively. The likelihood of the second-auction price and winner given the

first-auction data can be expressed as follows for each item.

If the first-auction winner wins the second auction, it is L = (1−D̃(p|bw1))f̃2(p|bl1).

If the first-auction loser wins the second auction, it is L = (1− F̃2(p|bl1))d̃(p|bw1). The

log-likelihood of the second-auction data as a whole is the sum of all the k item-level

log-likelihoods, L = 1
k

∑k
i=1 log(Li).

Now, to use sieve estimation, D̃(·|·) and F̃2(·|·) are approximated with Bernstein

polynomials. Specifically, D̃(v|b) and F̃2(v|b) are approximated by bivariate Bernstein

polynomials of the form

B(v, b) ≡
m∑
i=0

n∑
j=0

γi,j

(
m

i

)
vi(1− v)m−i

(
n

j

)
bj(1− b)n−j, (8)

where m and n are the polynomial degrees for v and b, respectively. This approxima-

tion does place a restriction that D̃(v|b) and F̃2(v|b) be continuous in b. Finally, D̃(·|·)
and F̃2(·|·) are estimated by finding the polynomial parameters γ that maximize the

log likelihood L . A benefit of using Bernstein polynomials is that it is easy to impose

required properties. Since D̃(·|b) and F̃2(·|b) are cdfs, I restrict B(v, b) to be weakly

increasing in v by applying the restriction γi,j ≤ γi′,j if i < i′. I also impose γ0,j = 0

(i.e. F2(v|b) = 0) and γm,j = 1 (i.e. F2(v̄|b) = 1).

The second step of the estimation procedure is to estimate s̃(b, v2). As the proof

of identification for s̃(b, v2) is constructive, I use it directly as an estimator as fol-

lows. For a fixed b, s̃(b, ·) maps the α-quantile of F̃2(·|b) to the α-quantile of D̃(·|b),
because s̃(b, v2) is monotonic in v2. Therefore, given ˆ̃F (·|·) and ˆ̃D(·|·) from the first

step of the estimation procedure, I obtain ˆ̃s(b, ·) nonparametrically as the function

that maps ˆ̃F−1
2 (α|b) to ˆ̃D−1(α|b) for every quantile α on a grid over [0,1]; that is,

ˆ̃s(b, ·) = ˆ̃D−1( ˆ̃F2(·|b)|b). Since I can repeat this procedure for any b I choose, I have

an estimator for s̃(·, ·).
The third step of the estimation procedure is to estimate F1(·), the distribution

of v1, using the inverse bid function ξ(b) derived in (4):

v̂1 = ξ̂(b) ≡ b+
Ĝ(b)

(N − 1)ĝ(b)
−

v̄ˆ

v2=v

{ ˆ̃s(b,v2)ˆ

u=v

Ĥ1(u|b)du−
v2ˆ

u=v

Ĥ2(u|b)du
}
d ˆ̃F2(v2|b).

21



The distribution and density of first-auction bids Ĝ(·) and ĝ(·) can be estimated

from observed bids nonparametrically, while ˆ̃s(·, ·) and ˆ̃F2(·|·) are known from estima-

tion steps 1 and 2. The distributions Ĥ1(·|·) and Ĥ2(·|·), defined in (1) and (2), are

functions of ˆ̃F (·|·) and ˆ̃D(·|·). Therefore, I can compute ξ̂(b). Since bids are mono-

tonic in v1, we have F−1
1 (α) ≡ v1(α) = ξ(b(α)) for any quantile α. Upon computing

ξ̂(b(α)) for a grid of α over [0,1], I obtain F̂1(·) as the function that maps ξ̂(b(α))

to α. I prove the consistency of the estimators for F2(·|·), D(·|·), s(·, ·), and F1(·) in

section A.3 of the Online Appendix. In Online Appendix A.4, I conduct Monte Carlo

studies to evaluate the performance of the estimator in finite samples, compare se-

lection criteria for sieve orders,19 and assess the coverage rate of bootstrap percentile

intervals.

If bidders are risk-averse, F̂1(·) must be estimated conditional on a utility function,

since the first-order condition for bidding depends on it. I assume a parametric utility

function characterized by a risk aversion parameter ρ. I develop an estimator for ρ

based on identification using the auction sequence, as explained in section 4.2. The

criterion for similarity between F1(·) and F2(·) could be that the distance between

the two distributions be minimized, leading to the minimum distance estimator

ρ̂ = arg min
ρ

∑
α

[ξ̂(b(α), ρ)− F̂−1
2 (α)]2. (9)

5.2 Auction covariates

The ideal way to deal with auction heterogeneity would be to estimate separate value

distributions for every value of vector z, but this leads to a curse of dimensionality.

As a result, a common approach in the empirical auction literature, as explained in

Haile, Hong, and Shum (2003), is to homogenize bids across auctions by “demeaning”

them, i.e. transforming bids to regression residuals η = b− z′β and working with the

residuals in estimation. This allows one to “pool” all the data. The underlying

assumptions are that v = z′β + ε (additive separability) and that the distribution of

ε is invariant to z (independence).

Instead of transforming bids and prices to demeaned residuals, I transform bids

and prices to quantiles conditional on z′β; that is, b becomes b̃ ≡ G(b|z′β) and p

19I select sieve orders by minimizing the criterion 0.5k− 2 ln(L), where k is the number of param-
eters and ln(L) is the log likelihood of the data.
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becomes p̃ ≡ J(p|z′β), where G(·) is the distribution of first auction bids and J(·)
is the distribution of second auction prices. Both G(·) and J(·) are observed in the

data.20 I then use these quantiles to perform the first step of estimation. Afterwards,

the output from this step is transformed back to real values before proceeding with the

other steps of estimation. Note that demeaning is a special case of taking quantiles;

under assumptions of additive separability and independence, the residuals η = b−z′β
map to quantiles of the bid distribution.

The following assumptions underlie the homogenizing procedure.

AS7 Single index assumption: F1(·|z) = F1(·|z′β), F2(·|·, z) = F2(·|·, z′β)

Define the quantiles α1 ≡ F1(v1|z′β), α2 ≡ F2(v2|z′β), and αs ≡ F2(s(v1, v2)|z′β).

Also, using the distribution of second-auction prices J(·), define α̃2 ≡ J(v2|z′β) and

α̃s ≡ J(s(v1, v2)|z′β). By definition, these α’s are in [0,1]. According to Sklar’s

Theorem, there exists a bivariate copula C(·, ·) for any bivariate joint distribution

F (·, ·) such that F (v1, v2) = C(α1, α2).21 Transforming bid data to quantiles and

“pooling” them across different z assumes this copula is invariant to z:

AS8 Copula restriction

1. C(α1, α2|z) = C(α1, α2)

2. C(α1, αs|z) = C(α1, αs)

AS8.2 implicitly restricts the synergy function s(·, ·) to preserve this quantile rela-

tionship across different z′β.

Remark 1. Under assumptions AS7 and AS8, C(α1, α̃2) and C(α1, α̃s) are also invari-

ant to z.

It directly follows that the objects to be estimated - F̌2(α̃2|α1) and Ď(α̃s|α1) -

are invariant to z′β, since F̌2(α̃2|α1) is just a conditional of C(α1, α̃2), for instance.

Therefore, observations with different z′β can be pooled in the first step of estimation

once the bids and prices have been transformed to quantiles.

20Specifically, I estimate b̃ = Ĝ(b|z′β) and p̃ = Ĵ(p|z′β) using the empirical cdf of b and p,
respectively, conditioning on z′β via Epanechnikov kernels.

21I do not use a specific parametric form for the copula; my copula is nonparametric.
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If I were to take the demeaning approach, I would need all of the assumptions

made here and two more: that v1, v2, and s(v1, v2) are additively separable in z′β and

a residual ε, and that these residuals have the same distribution regardless of z′β.22

The quantile approach, on the other hand, does not assume additive separability and

allows marginal distributions to vary with z′β. Besides avoiding strong assumptions,

allowing flexibility in how z′β affects values also allows covariates to absorb as much

of the correlation between values as possible, making the efficiency tradeoff relative

to demeaning worthwhile given the paper’s goal of disentangling affiliation.

6 Estimation using the paired leases in New Mex-

ico

6.1 Sample and model used

Since both winners and losers are needed in order to identify synergy, the number of

bidders N must be at least 2. Also, since bid functions in A1 depend on N , a number

of steps in the estimation procedure are conducted separately for each value of N .

Therefore, there must be a sufficient number of auctions observed in the sample for

each value of N considered in the estimation. Looking at Table 1, the sample size is

largest at N = 2 and N = 3, and the number of observations becomes rather small

for auctions with N ≥ 4. Therefore, I use N = 2 and N = 3 in my estimation, which

gives a sample of roughly 400 pairs. As the model assumes that the set of bidders

participating in the first and second auction are the same, observations in which the

second-auction winner did not bid in the first auction are dropped from the sieve

maximum likelihood estimation.

The SLO employs a very longstanding, publicly known reserve price of roughly

$15.625 per acre. I assume this is non-binding; the agency considers the reserve price

a “starting point” for serious bidders and tries not to offer tracts for which it might

be binding. Meanwhile, as Kong (2020) found risk aversion to be important in the

New Mexico oil and gas lease auctions, I allow bidders to be risk-averse. Thus the

primitives of the model are the v1-distribution F1(·), the conditional v2-distribution

F2(·|v1), the synergy function s(·, ·), and the utility function U(·). I choose the

22I show in Online Appendix A.1 that Haile et al. (2003)’s method can be used for bid homoge-
nization under those assumptions.
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constant relative risk aversion (CRRA) specification for utility, so U(·) is represented

by a risk aversion parameter ρ.

6.2 Covariates z

As discussed in section 5.2, the vector of lease characteristics z will be used to form

a single index z′β that represents the heterogeneity across leases. This section lists

the z’s used to form z′β. It should be emphasized that the main purpose here is not

to study the β coefficient on each variable z. Rather, it is to form an index z′β that

absorbs as much of the heterogeneity between auction items as possible, such that

conditional on the index, remaining variation in bidders’ values is due to bidder-level

idiosyncracies. The z’s are chosen with this purpose in mind.

Observable characteristics of auctioned leases fall into three categories: lease

terms, time of auction (industry, economic, local conditions of that time), and lo-

cation of the tract (encompassing geological features). The royalty rate is indicated

by the lease prefix, VA (subregular), V0 (regular), or VB (premium) in this sam-

ple; better tracts are assigned higher rates. As the VA prefix was discontinued in

2005, prefixes pre-2005 will be distinguished from prefixes post-2005. The contracted

duration of a lease absent production does not vary in this sample, at 5 years.

To represent the effects of time, I include year fixed effects as well as month fixed

effects to reflect any seasonality. These are supplemented by oil prices (West Texas

Intermediate) and gas prices (natural gas 1 month futures). In addition, average price

per acre in the previous month’s auctions and average price per acre in the federal

Bureau of Land Management’s23 lease sales in the same quarter are included to reflect

local and industry conditions around the time.

The location of the tract implies geological information. As a first-level control,

the volume of oil produced on the tract between 1970 and the auction date and the

volume of oil produced after the auction date through 2014 are included as indicators

of a tract’s potential for production. I also construct and include as a covariate a

smooth, location-based value index as follows. I take deflated sealed bid data from the

SLO auctions and fit a smooth surface of these bids on geographic (north-south and

east-west) coordinates using local quadratic regression. This procedure is performed

once for each auction, excluding own-auction bids from the smoothing procedure,

23The BLM is a bureau that manages federal public lands, and is distinct from the State Land
Office that manages state trust lands. Their auctions are quarterly.
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and the index for each tract is the value predicted by the fitted surface excluding

own-auction bids. This “heatmap” index serves as a further control for location-

determined heterogeneity.

To form z′β, I regress log submitted sealed bids on these covariates. The regression

coefficients are displayed in Table 10 of Online Appendix A.5. The heatmap index

in particular has good explanatory power; a 1% increase in the index is associated

with a 0.7% increase in bids. The coefficients on the premium lease prefix dummy,

natural gas prices, and prices in recent lease sales are also positive and statistically

significant.

6.3 Empirical results

In this section I discuss the empirical results from applying the estimation procedure

to the data, starting with the estimated joint distribution of (v1, v2). I find that

bidders with a high v1 are more likely to have a high v2; fitting a Kendall’s tau to

values simulated from F̂ (v1, v2) yields 0.37. To place this value in context, simulations

show that this amount of affiliation alone will cause the same bidder to win both

objects 69% of the time in a two-bidder auction.

Figure 3 plots the estimated synergy function as a function of v2 at different

values of v1. When reading the plot, it helps to know that the 90th percentile of v2 is

roughly $85,000; i.e. data is concentrated in the left side of the plot. A dotted 45◦ line,

representing zero synergy, is included for reference. The estimated synergy function

lies above the 45◦ line, meaning s(v1, v2) > v2 and synergy is positive. The lower

bound of the 95% bootstrap percentile interval is also above the 45◦ line where the

data is concentrated, indicating statistically significant synergy. For higher values of

v2, the added benefit of synergy, s(v1, v2)− v2, appears fairly constant. This suggests

that most of the synergy comes from fixed cost savings that “max out” at some

value. For the median value of v1 at median z′β (about $35000), Ev2 [s(v1, v2)− v2] is

estimated to be on the order of $13,000.

The SLO does allow leases to be transferred between firms, so the valuations that

form v1 and v2 may already account for the possibility of buying (selling) synergistic

leases from (to) other firms. Positive estimated synergy indicates and measures the

fact that, even if v2 already has this possibility built into its value, winning the first

auction still increases bidders’ values for the second lease. An important reason for
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this is that lease transfers must be negotiated between parties, so such a transaction

is not frictionless.

Finally, the CRRA parameter ρ is estimated using the minimum-distance estima-

tor defined by (9). The estimator’s minimand is uniquely minimized by ρ̂ = 0.47,24

indicating risk-averse bidders. A parameter value of ρ = 0 indicates risk-neutrality

and ρ = 1 indicates log-utility. As a comparison, Holt and Laury (2002) measure

CRRA parameters centered around the 0.3-0.5 range in laboratory experiments, and

Lu and Perrigne (2008) measure roughly 0.59 for the USFS timber auctions.

I estimate a number of alternative specifications in Online Appendix A.6. First, I

restrict the estimation sample to auctions with two bidders only. This is a subsample

for which the evidence in Table 2 and A2 prices above the minimum acceptable

bid provide sufficient confidence that A1 and A2 typically share the same bidders.25

Second, I condition F2(·|·) and D(·|·) on the number of auctions a bidder wins between

A1 and A2, w; that is, I estimate F2(·|v1, w) and D(·|v1, w) and the resulting synergy

function. Third, rather than excluding observations in which the A2 winner did not

bid in A1, I include these observations and estimate a model in which there is always

one additional bidder in A2 than there is in A1. Synergy estimates in these alternative

specifications are very close to the one shown in Figure 3 for values of v2 below the

90th percentile, where data is most dense and bootstrap intervals are most narrow.

7 Counterfactuals

7.1 Simulated model

Using the structural estimates obtained from the estimation procedure, I first perform

counterfactual simulations to understand the driving forces behind what I observe in

the data. Table 5 displays the results.

The “observed” row shows what is observed in the data for pairs with N = 2 at

median z′β.26 Under the “simulated” heading, row (1) displays the expected revenue

simulated using the full model; it is the simulated analog of the “observed” row.

Subsequent rows show what revenue would be if selected elements of the full model

24See Online Appendix A.5 Figure 10.
25The N = 3 sample does not share this property because there is no way to disprove attrition,

i.e. from three bidders in A1 to two bidders in A2.
26Revenue “at” median z′β is computed via kernel regression of revenue on z′β.
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were shut down.27 Row (4), which simulates a sequence of two English auctions, will

be useful later because it allows a comparison of sequential and bundled auctions

holding the auction format fixed at a single format.

Comparing the “observed” row to simulated row (1) gives a sense of model fit. In

addition, Figure 4 compares the empirical cdf of A1 bids and A2 prices in the actual

data to the empirical cdf of those bids and prices simulated from the estimated model.

The model does a good job of fitting the probability that the same bidder wins both

tracts, expected revenue, and the distribution of bids and prices.

Section 2 documented that the A1-winner is more likely than other bidders to win

A2, but until now I was unable to assess how much of this was due to synergy versus

affiliation. Comparing rows (1) and (3) reveals that if synergy were eliminated, the

proportion of cases in which the same bidder wins both tracts would drop from 75%

to 69%. On the other hand, row (2) shows that if v1 and v2 were not affiliated, that

percentage would drop sharply to 55%. I conclude that both synergy and affiliation

are responsible for the same-winner phenomenon, but affiliation is the primary expla-

nation. This highlights the importance of allowing for and distinguishing affiliation

from synergy.

7.2 Bundled auctions

A policy alternative in the presence of synergy would be to auction the pair as a

bundle, as this guarantees the winning bidder will realize synergy. A downside of

bundling is that it forces a single bidder to take both tracts, even when the highest-

value bidder for each tract is different. A general theoretical comparison of sequential

versus bundled auctions that applies to this model does not exist. Having used Table

5 to understand the forces at work, I focus on the question of whether to bundle in

Table 6. In this table, the auction format is held fixed at the English auction format

to assess the effect of bundling without confounding factors. Column (a) simulates

a sequence of two English auctions; i.e. Table 6’s (1)(a) equals Table 5’s (4)(c).

Columns (b) and (c) simulate bundled auctions under two different informational

assumptions: one in which the bidder bids based on bundle value v1 + s(v1, v2) and

27In row (2), which simulates the counterfactual scenario of no affiliation, pairs of (v1, v2) emerge
in simulation that are rarely observed in the data, e.g. very low v1 and very high v2. For these
extreme draws, s(v1, v2) is not well identified. Since s(v1, v2) does not change dramatically with
v1 according to Figure 3, I do the following for row (2) simulations: compute the synergy-inclusive
value of the second lease as a function of v2 only, i.e. s(v1, v2) = š(v2) ≡ D−1(F2(v2)).
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the other in which the bidder is uncertain about v2 and bids based on an expected

value for the bundle, v1 + E[s(v1, v2)|v1].

In both the two-bidder and three-bidder case (rows (1) and (3), respectively),

revenues in columns (b) and (c) are higher than in (a); the effect of bundling on

auction revenue is positive. The increase amount depends on the level of bidders’

certainty regarding v2, but it is at least 7%. As shown in Table 1, a large majority of

these auctions receive three bids or less. The finding that bundling would be better for

revenue is consistent with the computations of Subramaniam and Venkatesh (2009),

which suggest that the smaller the number of bidders, the more likely are bundled

auctions to dominate sequential auctions in terms of revenue. This can be reversed for

larger N , where it may be optimal to exploit competition twice by selling each tract

separately. The result is also generally consistent with papers that study bundling in

contexts without synergy, such as Palfrey (1983) and Chakraborty (1999). Both of

these papers find that the smaller the number of bidders, the more likely is bundling

to increase revenue in Vickrey auctions.

Meanwhile, since these auctions are run by a public institution, revenue consid-

erations must be balanced against allocative efficiency, or the desire to award tracts

to the firms that value them most. Rows (2) and (4) address allocative efficiency by

computing the total value derived from a pair of tracts by the winner(s). If a single

bidder wins both - which is always the case for bundled auctions - this total value is

inclusive of synergy. The table shows that bundling leads to a loss in this total value

of 2-3% in the informational case of column (b) and more in the case of column (c).

While bundling guarantees that synergy will be realized, it gives up the flexibility of

allocating the two leases to different bidders. On net the negative effect of the latter

on efficiency outweighs the positive effect of the former in these auctions.

One caveat in interpreting these results is that this comparison of sequential versus

bundled auctions holds the number of bidders constant across the two policies. Leases

of the bundled size are too rare in the data to deduce whether and how the act of

bundling would change the number of bidders. Here I provide computations for the

baseline case of no change.
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7.3 Generalized bundling

As a primary policy question, I considered bundling two leases, or doubling the area

covered by a lease. Tracts cannot get smaller than their current size because, by

state rules, wells producing gas must be allotted at least 320 acres. Nonetheless,

I secondarily consider the general question of how auctioning a single large tract

compares to splitting it into T pieces and auctioning them sequentially. There are

some caveats to this exercise. First, the structure of synergy estimated between

two 320-acre tracts need not extrapolate to other sizes. Second, derivation of a full

equilibrium for T > 2 is not trivial, and I leave this for future research. Here, I look

for qualitative answers by simulating longer auction sequences under the following

assumptions: (1) synergy exists only between adjacent tracts in the sequence; (2)

when bidding in auction t, bidders account for the direct effect of winning auction t

on auction t + 1 but ignore ripple effects on auctions t + 2, ..., T ; (3) when bidding

in auction t, bidders do not use their memory of past auctions t − 1, t − 2, etc.

to predict future competition in auction t + 1; (4) Ft+1(vt+1|vt) = F2(vt+1|vt) and

st(vt, vt+1) = s(vt, vt+1).

Then at every auction t other than the last one, bidders bid according to

bt(vt, v
′
t) = v′t +

v̄ˆ

vt+1=v

{ s(vt,vt+1)ˆ

u=v

H̃1(u|vt)du−
vt+1ˆ

u=v

H̃2(u|vt)du
}
dF2(vt+1|vt).

︸ ︷︷ ︸
expected benefit in auction t+ 1 of winning auction t

where v′t =

 vt

s(vt−1, vt)

if t = 1 or lost auction t− 1

if won auction t− 1
. In auction T , bidders bid

v′T .

Table 7 presents simulation outcomes for a 3-auction and 4-auction sequence.

Comparing these sequential auctions to a single bundle of all tracts gives us a sense

of how revenue and efficiency respond to breaking a given tract into more and more

pieces. A bundle of 3 leases revenue-dominates sequential auctions by 16%, and this

increases to 23% for 4 leases. On the other hand, bundling causes a 5% and 7%

decrease in the measure of allocative efficiency relative to 3-auction and 4-auction

sequences, respectively. The pattern emerging from this table, combined with Table
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6, is that revenue here declines as a function of the number of pieces a given piece of

land is split into, but allocative efficiency increases.

8 Conclusion

This paper performs a structural analysis of auctions that take place sequentially,

are linked by synergy, and in which each bidder’s values can be affiliated across

auctions. It explains that ignoring affiliation can lead to exaggerated estimates of

synergy and distinguishes synergy from affiliation in identifying and estimating the

auction model. The model uses general functional forms for synergy and the joint

distribution of values while maintaining tractability in equilibrium analysis. The

paper establishes nonparametric identification of the model and develops a multi-step

estimation procedure that recovers all model primitives. Applying the estimation

method to New Mexico oil and gas lease data, I find both synergy and affiliation

between adjacent tracts. Affiliation is more important than synergy when it comes to

explaining why the same bidder often wins both tracts. Counterfactual simulations

predict that bundled auctions would yield higher revenue than sequential auctions

given the estimated combination of synergy, affiliation, and the typically low number

of bidders.

The paper opens the door to distinguishing causal effects from persistent hetero-

geneity in other types of sequential auctions or sequential events that generate bids

in the first stage. Its main insight for doing so is adaptable to other sequences as long

as first-auction bids are monotonic in values and observed. Another very interesting

possibility is that of extending the method to a longer sequence of affiliated items. As

alluded to in section 7.3, affiliation of a bidder’s values across a longer sequence cre-

ates additional challenges for equilibrium derivation, but the structure of this model

offers hope for analysis with the help of some well-placed assumptions. Finally, the

paper’s insights may be useful for studying collusion in the context of sequential auc-

tions, which, relative to bundled auctions, alter the incentives for and sustainability

of collusive agreements. These questions remain open for future research.
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Table 1: Number of pairs, by number of bidders N in the first auction

N 0 1 2 3 4 5 6 7 8
pairs 14 267 247 165 98 50 21 9 1
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Table 2: Statistics for paired leases

For N ≥ 2:
Correlation of final price in 1st and 2nd auction 0.91
Probability that 2nd-auction winner also bid on 1st auction 93%

Probability that pair is won by same bidder: observed even odds
N = 2 74% 50%
N = 3 62% 33%
N = 4 67% 25%
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Table 3: Sharp RD estimates using local linear regression

(1) (2) (3)

Conventional 0.208 0.226 0.221
(0.101) (0.102) (0.105)

Bias-corrected 0.197 0.209 0.204
(0.101) (0.102) (0.105)

Robust 0.197 0.209 0.204
(0.124) (0.124) (0.126)

Fixed effects for N = 2 and N = 3 N Y Y
Interactions z × (N = 2) and z × (N = 3) N N Y
Observations 543 543 543
Epanechnikov kernel. Bandwidth selection according to Calonico et al.
(2014b) and Calonico et al. (2018) using rdrobust package. Standard errors
in parentheses.
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Table 4: Probit regression

Win 2nd auction

Won 1st auction 0.696
(0.125)

z 0.864
(0.134)

z*(number of auctions between A1 and A2) -0.009
(0.003)

Number of bidders fixed effects Y
Bidder fixed effects Y
Observations 1557
Standard errors in parentheses
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Table 5: Counterfactual revenue for pair

% same (a) (b) (c)
winner A1 A2 Total

Observed 78%* 52,682 40,155 92,837
Simulated
(1) S + RA + A 75% 53,669 39,082 92,751
(2) S + RA 55% 50,865 39,645 90,510
(3) RA + A 69% 45,469 36,507 81,976
(4) EE: S + A 75% 44,999 39,082 84,081

*Excluding cases where A2-winner did not bid in A1

“S” = synergy, “A” = affiliation, “RA” = risk aversion,

“EE” = sequence of two English auctions, risk neutral
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Table 6: Sequential versus bundled auctions
(English auctions, risk neutral) Sequential Bundled auctions

(a) (b) (c)

v1 + s(v1, v2) v1 + E[s(v1, v2)|v1]
(b)-(a)

(a)

N = 2
(1) Revenue per pair 84,081 89,571 96,714 7%
(2) Value of tracts to winner(s) 349,070 343,609 336,478 -2%

N = 3
(3) Revenue per pair 136,621 146,417 146,896 7%
(4) Value of tracts to winner(s) 423,869 410,250 398,303 -3%

At median z′β
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Table 7: Longer sequences versus bundled auctions
(English auctions, risk neutral) Sequential auctions Bundled
N = 2 (a) (b) (c) (d) (e) (f) (g)

A1 A2 A3 A4 Total (f)-(e)
(e)

3 leases
(1) Revenue 44,999 49,299 39,903 - 134,201 156,277 16%
(2) Value of tracts to winner(s) 466,649 444,680 -5%
4 leases
(3) Revenue 44,999 49,299 50,118 39,267 183,682 226,106 23%
(4) Value of tracts to winner(s) 586,018 543,693 -7%
At median z′β. The value of the bundle is v1 + s(v1, v2) + s(v2, v3) for 3 leases and

v1 + s(v1, v2) + s(v2, v3) + s(v3, v4) for 4 leases.
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Figure 1: Regression discontinuity plot
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Figure 2: Nonparametric identification of synergy function
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Figure 3: Estimated synergy function
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Figure 4: Observed versus simulated bid and price distributions
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